

hp Unified Correlation Analyzer

Unified Correlation Analyzer
for

Event Based Correlation

Version 3.3

Administration, Configuration and Troubleshooting
Guide

Edition: 1.0

September 2015

© Copyright 2015 Hewlett-Packard Development Company, L.P.

2

Legal Notices

Warranty

The information contained herein is subject to change without notice. The only
warranties for HP products and services are set forth in the express warranty
statements accompanying such products and services. Nothing herein should be
construed as constituting an additional warranty. HP shall not be liable for technical
or editorial errors or omissions contained herein.

License Requirement and U.S. Government Legend

Confidential computer software. Valid license from HP required for possession, use
or copying. Consistent with FAR 12.211 and 12.212, Commercial Computer
Software, Computer Software Documentation, and Technical Data for Commercial
Items are licensed to the U.S. Government under vendor's standard commercial
license.

Copyright Notices

© Copyright 2015 Hewlett-Packard Development Company, L.P.

Trademark Notices

Adobe®, Acrobat® and PostScript® are trademarks of Adobe Systems Incorporated.

HP-UX Release 10.20 and later and HP-UX Release 11.00 and later (in both 32 and
64-bit configurations) on all HP 9000 computers are Open Group UNIX 95 branded
products.

Java™ is trademark of Oracle and/or its affiliates.

Microsoft®, Windows® and Windows NT® are U.S. registered trademarks of
Microsoft Corporation.

Oracle® is a registered U.S. trademark of Oracle Corporation, Redwood City,
California.

UNIX® is a registered trademark of The Open Group.

X/Open® is a registered trademark, and the X device is a trademark of X/Open
Company Ltd. in the UK and other countries.

3

Contents
Preface ... 9

Chapter 1... 11

Introduction .. 11

Chapter 2... 12

UCA for EBC Administration ... 12

2.1 Starting and stopping UCA for EBC .. 12
2.1.1 Starting UCA for EBC ... 12
2.1.2 Stopping UCA for EBC ... 12
2.1.3 Displaying the status of UCA for EBC ... 13
2.2 Command-line tools .. 14
2.2.1 uca-ebc-inventory .. 14
2.2.2 uca-ebc-injector ... 15
2.2.3 uca-ebc-admin ... 19
2.2.4 uca-ebc-instance .. 26
2.2.5 uca-ebc-backup .. 27
2.3 UCA for EBC User Interface ... 30

Chapter 3... 31

UCA for EBC Configuration .. 31

3.1 Multiple instances configuration ... 31
3.2 Configuration files.. 32
3.2.1 uca-ebc.properties file configuration .. 32
3.2.2 ActionRegistry.xml file configuration .. 36
3.2.3 uca-ebc-log4j.xml file configuration ... 43
3.2.4 Additional configuration files ... 45
3.2.5 How to revert back to the default configuration files ... 45
3.3 UCA-EBC UMB Mediation Adapter Configuration ... 45
3.3.1 The properties file .. 46
3.3.2 The hazelcast.xml file .. 46
3.3.3 The logging configuration file .. 46
3.3.4 The AdapterConfiguration.xml file... 46
3.4 High-Availability (HA) configuration .. 47
3.4.1 Simple cluster configuration using NFS ... 47
3.4.2 Neo4j database High-Availability (HA) configuration for Topology Extension ... 48
3.5 Backup and restore .. 50
3.5.1 Standalone UCA for EBC ... 50
3.5.2 Clustered UCA for EBC .. 50
3.5.3 UCA for EBC with external topology server .. 50

Chapter 4... 52

UCA for EBC Monitoring ... 52

4.1 Monitoring the alarm flow in real-time ... 52
4.1.1 Collector layer .. 53

4

4.1.2 Dispatcher layer ... 54
4.1.3 Value Pack layer ... 54
4.1.4 Scenario/Engine layer .. 54

Chapter 5... 56

UCA for EBC Troubleshooting .. 56

5.1 Troubleshooting tools ... 56
5.1.1 Log files .. 56
5.1.2 UCA for EBC Graphical User Interface ... 56
5.1.3 JMX Console .. 58

Chapter 6... 95

UCA for EBC Advanced Troubleshooting ... 95

6.1 UCA for EBC Logging Mechanism ... 95
6.1.1 Standard application logging ... 95
6.1.2 Collector logging .. 96
6.1.3 Scenario logging ... 97
6.1.4 Drools logging .. 105
6.2 Managing the Drools engine(s) .. 106
6.2.1 Dumping the Working Memory .. 106
6.2.2 Clearing the Working Memory .. 107
6.2.3 Reloading the rules .. 109
6.3 Managing the flows and actions .. 111
6.3.1 Managing the DB flows ... 111
6.3.2 Managing the mediation flows ... 112
6.3.3 Managing actions ... 116
6.4 UCA for EBC Performance analysis .. 116

Chapter 7... 118

Frequent problems and solutions .. 118

7.1 Problems executing uca-ebc-admin .. 118
7.1.1 Cannot connect to UCA for EBC JMX connector .. 118
7.1.2 FileNotFoundException: ${UCA_EBC_INSTANCE} /logs/uca-ebc-admin.log 119
7.2 Problems executing uca-ebc-injector.. 119
7.2.1 Cannot create connection .. 119
7.2.2 FileNotFoundException: ${UCA_EBC_INSTANCE} /logs/uca-ebc-injector.log ... 120
7.3 Problems starting UCA for EBC .. 120
7.3.1 AlreadyBoundException ... 120
7.3.2 ClassNotFoundException:

javax.management.remote.rmi.RMIServerImpl_Stub....................................... 121
7.3.3 FileNotFoundException: ${UCA_EBC_INSTANCE} /logs/uca-ebc.log 122

Glossary .. 123

5

Figures
Figure 1 - ActionRegistry.xml file .. 37
Figure 2 - UCA for EBC – Monitoring the Alarm Flow ... 53
Figure 3 - Troubleshooting/Log panel at Application level ... 57
Figure 4 - Troubleshooting/Statistics panel at Application Level ... 58
Figure 5 - Java JMX Console: Connecting to UCA for EBC Server ... 59
Figure 6 - Java JMX Console: UCA for EBC MBeans .. 60
Figure 7 - Java JMX Console: UCA for EBC Action Manager .. 61
Figure 8 - Java JMX Console: UCA for EBC Collector - Attributes ... 65
Figure 9 - Java JMX Console: UCA for EBC Dispatcher - Attributes .. 67
Figure 10 - Java JMX Console: UCA for EBC Properties - Attributes .. 69
Figure 11 - Java JMX Console: UCA for EBC Server - Operations ... 71
Figure 12 - Java JMX Console: UCA for EBC Value Pack Manager - Operations 72
Figure 13 - Java JMX Console: a UCA for EBC Value Pack .. 76
Figure 14 - Java JMX Console: UCA for EBC Value Pack - Class Loader - Attributes 77
Figure 15 - Java JMX Console: UCA for EBC Value Pack - Class Loader - Operations 79
Figure 16 - Java JMX Console: UCA for EBC Value Pack – DB Flows - Attributes 81
Figure 17 - Java JMX Console: UCA for EBC Value Pack – DB Flows - Operations 82
Figure 18 - Java JMX Console: UCA for EBC Value Pack – Mediation Flows - Attributes 83
Figure 19 - Java JMX Console: UCA for EBC Value Pack – Mediation Flows - Operations 84
Figure 20 - Java JMX Console: UCA for EBC Value Pack - Scenarios .. 86
Figure 21 - Java JMX Console: UCA for EBC Value Pack – Value Pack - Attributes 87
Figure 22 - Java JMX Console: UCA for EBC Value Pack – Value Pack - Operations 89
Figure 23 - Java JMX Console: UCA for EBC Value Pack – Scenario - Attributes 90
Figure 24 - Java JMX Console: UCA for EBC Value Pack – Scenario - Operations 93
Figure 25 - Configuring scenario specific logging in the uca-ebc-log4j.xml file 98
Figure 26 - Configuring scenario exceptions specific logging in the uca-ebc-log4j.xml file 99
Figure 27 - Java JMX Console: Enabling/Disabling scenario specific rule execution logging for one
scenario .. 100
Figure 28 - Selecting the JBoss Drools perspective in Eclipse IDE by clicking on the JBoss Drools
perspective icon ... 101
Figure 29 - Selecting the JBoss Drools perspective in Eclipse IDE by using the Eclipse IDE menus ... 101
Figure 30 - Showing the JBoss Drools Audit view in Eclipse IDE ... 102
Figure 31 - Eclipse IDE: Using drag and drop to open a Drools engine log file in the Drools Audit panel
 .. 102
Figure 32 - Eclipse IDE: Using the “Open log” icon to open a Drools engine log file in the Drools Audit
panel ... 102
Figure 33 - Eclipse IDE: Viewing scenario rule execution logs .. 103
Figure 34 - Showing the JBoss Drools Agenda or Working Memory view in Eclipse IDE 103
Figure 35 - Running a JUnit Test of a Value Pack in debug mode in Eclipse IDE 104
Figure 36 - Sample view of the Drools Working Memory panel in Eclipse IDE 104
Figure 37 - Sample view of the Drools Agenda panel in Eclipse IDE ... 104
Figure 38 - Configuring the log for Working Memory Agenda and Event Listeners 105
Figure 39 - Java JMX Console: Dumping the working memory of a Scenario 106
Figure 40 - UCA for EBC User Interface: Dumping the working memory of a scenario 107
Figure 41 - Java JMX Console: Clearing the working memory of a Scenario 108
Figure 42 - UCA for EBC User Interface: Clearing the working memory of a scenario 108
Figure 43 - Java JMX Console: Reloading the rules of a Scenario ... 109
Figure 44 - Java JMX Console: Reloading the rules of all Scenarios of a Value Pack 110
Figure 45 - UCA for EBC User Interface: Reloading the rules of a Scenario ... 110
Figure 46 - Java JMX Console: Performing operations on a single DB flow .. 111
Figure 47 - UCA for EBC User Interface: Performing operations on a single DB flow 112
Figure 48 - Java JMX Console: Performing operations on mediation flows at the Value Pack level .. 113
Figure 49 - UCA for EBC User Interface: Resynchronizing the mediation flows of a Value Pack 113
Figure 50 - Java JMX Console: Performing operations on a single mediation flow 115
Figure 51 - UCA for EBC User Interface: Performing operations on a single mediation flow 116
Figure 52 - Java JMX Console: Dumping Failed Actions for a Scenario ... 116
Figure 53 - Java JMX Console: Monitoring performance of UCA for EBC Server.................................. 117

6

7

Tables

Table 1 - Software versions 9
Table 2 - uca-ebc-injector tool options 18
Table 3 - Properties for uca-ebc-injector in uca-ebc.properties file 18
Table 4 - uca-ebc-admin tool main options 23
Table 5 - uca-ebc-admin tool sub-options 25
Table 6 - Properties for uca-ebc-admin in uca-ebc.properties file 26
Table 7 - Main options for the uca-ebc-instance tool 26
Table 8 - Options for backing up UCA for EBC instances using the uca-ebc-instance tool 28
Table 9 - Options for restoring UCA for EBC instances using the uca-ebc-instance tool 29
Table 10 - Options for listing the available UCA for EBC instance backups using the uca-ebc-instance
tool 30
Table 11 - Host and Port # properties in the uca-ebc.properties file 33
Table 12 - Web GUI properties in the uca-ebc.properties file 34
Table 13 - Collector properties in the uca-ebc.properties file 34
Table 14 – UMB Received Events 35
Table 15 - Action Manager properties in the uca-ebc.properties file 35
Table 16 - Rule Engine logger properties in the uca-ebc.properties file 36
Table 17 - Java JMX Console: UCA for EBC Action Manager – Action Queue - Attributes 62
Table 18 - Java JMX Console: UCA for EBC Action Manager – Action Queue - Operations 63
Table 19 - Java JMX Console: UCA for EBC Action Manager – Action Statistics - Attributes 63
Table 20 - Java JMX Console: UCA for EBC Action Manager – Action Statistics - Operations 64
Table 21 - Java JMX Console: UCA for EBC Action Manager – Action Threads - Attributes 64
Table 22 - Java JMX Console: UCA for EBC Action Manager – Action Threads - Operations 64
Table 23 - Java JMX Console: UCA for EBC Collector - Attributes 66
Table 24 - Java JMX Console: UCA for EBC Collector - Operations 66
Table 25 - Java JMX Console: UCA for EBC Dispatcher - Attributes 68
Table 26 - Java JMX Console: UCA for EBC Dispatcher - Operations 68
Table 27 - Java JMX Console: UCA for EBC Properties - Attributes 70
Table 28 - Java JMX Console: UCA for EBC Server - Operations 71
Table 29 - Java JMX Console: UCA for EBC Value Pack Manager - Attributes 72
Table 30 - Java JMX Console: UCA for EBC Value Pack Manager - Operations 75
Table 31 - Java JMX Console: UCA for EBC Value Pack - Class Loader - Attributes 78
Table 32 - Java JMX Console: UCA for EBC Value Pack - Class Loader - Operations 80
Table 33 - Java JMX Console: UCA for EBC Value Pack – DB Flows - Attributes 82
Table 34 - Java JMX Console: UCA for EBC Value Pack – DB Flows - Operations 82
Table 35 - Java JMX Console: UCA for EBC Value Pack – Mediation Flows - Attributes 84
Table 36 - Java JMX Console: UCA for EBC Value Pack – Mediation Flows - Operations 85
Table 37 - Java JMX Console: UCA for EBC Value Pack – Value Pack - Attributes 88
Table 38 - Java JMX Console: UCA for EBC Value Pack – Value Pack - Operations 90
Table 39 - Java JMX Console: UCA for EBC Value Pack – Scenario - Attributes 93
Table 40 - Java JMX Console: UCA for EBC Value Pack – Scenario - Operations 94
Table 41 - uca-ebc-admin: Cannot connect to UCA for EBC JMX connector 118
Table 42 - uca-ebc-admin: FileNotFoundException 119
Table 43 - uca-ebc-injector: Cannot create connection 119
Table 44 - uca-ebc-injector: FileNotFoundException 120
Table 45 - uca-ebc: AlreadyBoundException 120
Table 46 - uca-ebc: ClassNotFoundException 121
Table 47 - uca-ebc: FileNotFoundException 122

9

Preface

This guide provides an overview of Unified Correlated Analyzer for Event Based
Correlation product and describes how to administer, configure, monitor and
troubleshoot the UCA for EBC product.

Product Name: Unified Correlation Analyzer for Event Based Correlation (also
referred to in this document as UCA for EBC)

Product Version: 3.3

Intended Audience

Here are some recommendations based on possible reader profiles:

 Solution Developers

 Software Development Engineers

Software Versions

The term UNIX is used as a generic reference to the operating system, unless
otherwise specified.

The software versions referred to in this document are as follows:

Product Version Supported Operating systems

UCA for Event Based Correlation
Server Version 3.3

HP-UX 11.31 for Itanium
Red Hat Enterprise Linux Server release 5.9 &
6.5

UCA for Event Based Correlation
Channel Adapter Version 3.3

HP-UX 11.31 for Itanium
Red Hat Enterprise Linux Server release 5.9 &
6.5

UCA for Event Based Correlation
Software Development Kit
Version 3.3

Windows XP / Vista 64 bits
Windows Server 2012
Windows 7 64 bits
Red Hat Enterprise Linux Server release 5.9 &
6.5

Table 1 - Software versions

Typographical Conventions

Courier Font:

 Source code and examples of file contents

 Commands that you enter on the screen

 Pathnames

 Keyboard key names

Italic Text:

 Filenames, programs and parameters.

10

 The names of other documents referenced in this manual.

Bold Text:

 To introduce new terms and to emphasize important words.

Associated Documents

The following documents contain useful reference information:

References

[R1] HP UCA for EBC Reference Guide

[R2] HP UCA for EBC Value Pack Development Guide

[R3] HP UCA for EBC User Interface Guide

[R4] HP UCA for EBC Installation Guide

[R5] HP UCA for EBC Topology Extension Guide

[R6] HP UCA for EBC Clustering and HA Guide

[R7] HP UCA for EBC Installation and Configuration Guide

Support

Please visit our HP Software Support Online Web site at
https://softwaresupport.hp.com/ for contact information, and details about HP
Software products, services, and support.

The Software support area of the Software Web site includes the following:

 Downloadable documentation.

 Troubleshooting information.

 Patches and updates.

 Problem reporting.

 Training information.

 Support program information.

https://softwaresupport.hp.com/

11

Chapter 1

Introduction

This guide describes how to administer, configure, monitor and troubleshoot the
UCA for EBC product.

Throughout this document, we use the ${UCA_EBC_HOME} environment variable to

reference the root directory (“static” part) of UCA for EBC. The default value for the
${UCA_EBC_HOME} environment variable is /opt/UCA-EBC. The
${UCA_EBC_HOME} environment variable thus references the /opt/UCA-EBC

directory unless UCA for EBC “static” part has been installed in an alternate
directory.

We also use ${UCA_EBC_DATA} environment variable to reference the data

directory (“variable” part) of UCA for EBC. The default value for the
${UCA_EBC_DATA} environment variable is /var/opt/UCA-EBC. The
${UCA_EBC_DATA} environment variable thus references the /var/opt/UCA-EBC

directory unless UCA for EBC “variable” part has been installed in an alternate
directory.

Since UCA-EBC V2.0, the ${UCA_EBC_DATA} directory may contain multiple

instances of UCA-EBC. In this document, we will use the value
${UCA_EBC_INSTANCE} for referring to
${UCA_EBC_DATA}/instances/<instance-name> directory.

At installation, a single <instance-name> is configured: default.

 For more information on how to install the UCA for EBC product, please refer

to: [R4] HP UCA for EBC Installation Guide.

 For more information on the UCA for EBC product, please refer to: [R1] HP UCA

for EBC Reference Guide.

12

Chapter 2

UCA for EBC Administration

2.1 Starting and stopping UCA for EBC

2.1.1 Starting UCA for EBC

To start UCA for EBC, please run the following commands as uca user:

On both HP-UX, and Linux:

$ cd ${UCA_EBC_HOME}/bin

$ uca-ebc start

Here’s a sample output from this command:

Using UCA for EBC Home directory specified by the UCA_EBC_HOME
environment variable: /opt/UCA-EBC
Using UCA for EBC Data directory specified by the UCA_EBC_DATA
environment variable: /var/opt/UCA-EBC
*** INFO: Starting UCA for Event Based Correlation version 3.3

Traces are logged in the ${UCA_EBC_INSTANCE}/logs/uca-ebc.log file.

To start UCA for EBC in verbose mode (traces logged to the console), please run the
following commands as uca user (note the use of the –v option):

On both HP-UX, and Linux:

$ cd ${UCA_EBC_HOME}/bin

$ uca-ebc –v start

Since UCA-EBC V2.0, it is possible to launch multiple instances on a same machine.
Each instance is managed by the uca-ebc-instance command line tool (refer

to chapter 2.2.4). If not specified, the default instance is launched.

To start UCA for EBC for a specific instance (specified by <instance-name> in

the example below), please run the following commands as uca user (note the use
of the –i option):

On both HP-UX, and Linux:

$ cd ${UCA_EBC_HOME}/bin

$ uca-ebc –i <instance-name> start

2.1.2 Stopping UCA for EBC

In order to stop UCA for EBC, please run the following commands as uca user:

13

On both HP-UX, and Linux:

$ cd ${UCA_EBC_HOME}/bin

$ uca-ebc stop

Here’s a sample output from this command:

Using UCA for EBC Home directory specified by the UCA_EBC_HOME
environment variable: /opt/UCA-EBC
Using UCA for EBC Data directory specified by the UCA_EBC_DATA
environment variable: /var/opt/UCA-EBC
*** INFO: Shutting down UCA for Event Based Correlation version 3.3
*** INFO: UCA for Event Based Correlation version 3.3 has been
successfully stopped

Since UCA-EBC V2.0, it is possible to have multiple instances running on a same
machine. If not specified, the default instance is stopped.

To stop UCA for EBC for a specific instance (specified by <instance-name> in the
example below), please run the following commands as uca user (note the use of
the –i option):

On both HP-UX, and Linux:

$ cd ${UCA_EBC_HOME}/bin

$ uca-ebc –i <instance-name> stop

2.1.3 Displaying the status of UCA for EBC

In order to show the status of UCA for EBC, please run the following commands as
uca user:

On both HP-UX, and Linux:

$ cd ${UCA_EBC_HOME}/bin

$ uca-ebc status

Here’s a sample output from this command:

Using UCA for EBC Home directory specified by the UCA_EBC_HOME
environment variable: /opt/UCA-EBC
Using UCA for EBC Data directory specified by the UCA_EBC_DATA
environment variable: /var/opt/UCA-EBC
*** INFO: UCA for Event Based Correlation version 3.3 is running

The status of UCA for EBC can either be “Running” or “Stopped”.

Since UCA-EBC V2.0, it is possible to have multiple instances running on a same
machine. If not specified, the status of the default instance is returned.

To get the status of UCA for EBC for a specific instance (specified by <instance-
name> in the example below), please run the following commands as uca user
(note the use of the –i option):

On both HP-UX, and Linux:

$ cd ${UCA_EBC_HOME}/bin

$ uca-ebc –i <instance-name> show

14

2.2 Command-line tools
Some command-line tools are provided in the ${UCA_EBC_HOME}/bin folder that
may prove to be of some help to users of UCA for EBC:

 uca-ebc-inventory: this command-line tool lists the UCA for EBC packages
installed on the system.

 uca-ebc-injector: this command-line tool provides the capability to inject
alarms or events described in XML files directly into the UCA for EBC input
queue without going through the mediation layer (OSS Open Mediation
V7.2 or UMB V1.0), thus bypassing both OSS Open Mediation V7.2 and UCA
for EBC Channel Adapter (or UMB V1.0 and UCA for EBC Adapter if UMB is
used)

 uca-ebc-admin: this command-line tool provides a lot of options to
configure, administer, and monitor UCA for EBC, but also UCA for EBC value
packs and scenarios. Most of the features of this tool are also available
using the UCA for EBC User Interface.

 uca-ebc-instance: this command line tool manages the different
instances of UCA for EBC. It provides options to list current instances, add
a new instance, delete or rename an existing instance and set the default
instance name.

 uca-ebc-backup: this command line tool provides facilities for backup and
restore of the instances of UCA for EBC.

For more information on the UCA for EBC User Interface, please refer to: [R3] HP
UCA for EBC User Interface Guide

2.2.1 uca-ebc-inventory

This command-line tool lists the packages (including patches) installed on the
system for the following products:

 UCA for EBC Server

 UCA for EBC Channel Adapter for OSS Open Mediation

 UCA for EBC Development Kit

 OSS Open Mediation and OSS Open Mediation Channel Adapters

 UMB and UMB Adapters

To execute the uca-ebc-inventory tool, please use the following commands:

On both HP-UX, and Linux:

$ cd ${UCA_EBC_HOME}/bin

$ uca-ebc-inventory

Here’s an example of the output of the execution of uca-ebc-inventory:

15

 UCA For Event Based Correlation
 Components Inventory
 on <hostname> system

Installed UCA-EBC components:
UCA-EBCSERVER V3.3-00B HP UCA EBC Server Version 3.3
Level 00 Rev B
UCA-EBCCA V3.3-00B HP UCA EBC Channel Adapter
Version 3.3 Level 00 Rev B
UCA-EBCTOPO V3.3-00B HP UCA EBC Topology features
Version V3.3 Level 00 Rev B

Installed Mediation components:

ngossopenmediation V720-RHEL6 HP CMS Open Mediation
Version 7.2.0
---------------- END of UCA INVENTORY ------------------

The uca-ebc-inventory tool has no execution options and no associated
configuration file.

2.2.2 uca-ebc-injector

This command-line tool provides the capability to easily send events to UCA for EBC
by pushing XML files containing these events to the JMS input queue (implemented
as a JMS Topic) of UCA for EBC.

Events can be Alarm creation, Alarm Attribute Value Change, Alarm State Change,
Alarm Deletion, but can also be any object of classes extending the DefaultEvent
class.

The events are directly injected into UCA for EBC without going through the
mediation layer (OSS Open Mediation V7.2 or UMB V1.0), thus bypassing both OSS
Open Mediation V7.2 and UCA for EBC Channel Adapter (or UMB V1.0 and UCA for
EBC Adapter if UMB is used).

This command-line tool can be very helpful for testing UCA for EBC Value Packs in
real conditions without having to set up the mediation layer.

The uca-ebc-injector tool can read files containing alarms and more generally files
containing any class of event extending DefaultEvent.

Example format of an Alarms file
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<Alarms xmlns="http://hp.com/uca/expert/x733Alarm">

 <AlarmCreationInterface>

 <sourceIdentifier>src</sourceIdentifier>

 <identifier>1</identifier>

 <originatingManagedEntity>B1</originatingManagedEntity>

 <alarmType>COMMUNICATIONS_ALARM</alarmType>

 <probableCause>Fire</probableCause>

 <perceivedSeverity>MINOR</perceivedSeverity>

 <alarmRaisedTime>2009-09-16T12:00:00</alarmRaisedTime>

 <targetValuePack>myVP##temipFlow</targetValuePack>

 </AlarmCreationInterface>

<AlarmCreationInterface>

[. . .]
</AlarmCreationInterface>

</Alarms>

16

Important note 1: Events file cannot contain directly the raw description of events.
Events in events file have to be packaged in simple structures called
EventBoxeBase containing the event itself and an attribute indicating the class of
the event. The information about the class of the event will be used by UCA to
correctly unmarshal the event.

Example format of an Events file
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<Events xmlns="http://hp.com/uca/expert/event">

<EventBoxBase

eventClassName="com.hp.umb.example.metrics.Temperature">

 <eventString><![CDATA[<temperature

xmlns:ns2="http://hp.com/uca/expert/event"

xmlns:ns3="http://hp.com/umb/example/metrics"

xmlns:ns4="http://hp.com/uca/expert/x733Alarm">

<ns2:identifier>100</ns2:identifier>

<ns2:eventTime>0</ns2:eventTime>

<ns2:targetValuePack>MyVP</ns2:targetValuePack>

<ns3:value>37.2</ns3:value>

</temperature>]]>

 </eventString>

</EventBoxBase>

</Events>

Important note 2: All the classes of events sent by the uca-ebc-injector must be
loaded in UCA-EBC. For that purpose, this classes must be packaged in a .jar file
placed in the ${UCA_EBC_INSTANCE}/externallib directory, and uca-ebc must be
restarted.

In the example above, the class com.hp.umb.example.metrics.Temperature

must be wrapped in a jar file put in ${UCA_EBC_INSTANCE}/externallib (by default
/var/opt/UCA-EBC/instance/default/externallib)

Important note 3: When events are received by UCA through the UMB mediation
layer, and when events logging is activated (ref 6.1.2.2), the events are logged in
the uca-ebc-received-event.log directly in EventBoxBase structures as above,
making it easy to re-inject them with the uca-ebc-injector. For that purpose,
duplicate the uca-ebc-received-event.log file into a myEventsFile.xml and make
sure that myEventsFile.xml looks like the file below

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<Events xmlns="http://hp.com/uca/expert/event">

<!-- put the content of uca-ebc-received-event.log here -->

</Events>

The following sections describe how to execute and how to configure the uca-ebc-
injector tool.

17

To execute the uca-ebc-injector tool, please use the following commands:

On both HP-UX, and Linux:

$ cd ${UCA_EBC_HOME}/bin

$ uca-ebc-injector <options>

<options> is a list of valid options for the uca-ebc-injector tool

The uca-ebc-injector command-line tool can be used either in random mode, where
random alarms or events are generated automatically based on a template and
sent to UCA for EBC, or in file mode, where alarms/events are provided to the uca-
ebc-injector tool as an XML file that is then sent to UCA for EBC.

The uca-ebc-injector tool is by default in file mode unless the -r or --random option
is used, in which case the uca-ebc-injector tool is in random mode.

To use the uca-ebc-injector tool in file mode, please use the following commands:

On both HP-UX, and Linux:

$ cd ${UCA_EBC_HOME}/bin

$ uca-ebc-injector –file /tmp/Events.xml

The above command will send 1 burst of alarms to UCA for EBC. The alarms in this
burst will be exactly the same as the alarms in the file specified by the -file or --
filename option.

To use the uca-ebc-injector tool in random mode, please use the -r or --random
option. Below is an example of the uca-ebc-injector tool being used in random
mode:

On both HP-UX, and Linux:

$ cd ${UCA_EBC_HOME}/bin

$ uca-ebc-injector --random –file /tmp/Alarms.xml --number 10 -

-delay 5000

The above command will send 10 bursts of random alarms to UCA for EBC. The
delay between each burst will be 5 seconds. Each burst of alarms will send one
alarm unless the --buffer-size option is specified. The alarms sent in the burst will
be the same as the alarms in the template file except for the ID of the alarms
(sequential IDs will be used instead) and the severity of the alarm (the severity will
be chosen at random).

Since UCA for EBC 3.3, it is possible to have multiple instances running on a same
machine. If not specified, the uca-ebc-injector tool applies to the default instance.

This tool has the following options available:

Option name Description

-i <instance-name> Default value: default

This option sets the instance of UCA for EBC to use.
Instance <instance-name> must exist. If used, this
option must be set as first option.

--buffer-size <Size> Default value: 1

This option is used in random mode (-r, or --random
option) to specify the number of alarms per alarm
burst.

18

Option name Description

--delay <Delay> Default value: 0

This option specifies the delay (in milliseconds)
between 2 alarms files (in file mode) or 2 alarm bursts
(in random mode).

-f, -file <Filename> No default value

This option sets the uca-ebc-injector tool in file or
random modes. It specifies one alarm file to use as
input for the uca-ebc-injector tool.

The file specified by <filename> must be a valid XML
file complying with the Alarm XSD file located at the
following location: ${UCA_EBC_HOME}/schemas/uca-
expert-alarm.xsd

--number <Number> Default value: 1

This option is used in random mode (-r, or --random
option) to specify the number of alarm bursts to be
sent

-r, --random This option sets the uca-ebc-injector tool in random
mode.

This option can be used in conjunction with the -file
option to send random alarms (sequential IDs,
random severity) based on the alarms provided with
the -file option

Table 2 - uca-ebc-injector tool options

The uca-ebc-injector tool has some configuration properties defined in the
${UCA_EBC_INSTANCE}/conf/uca-ebc.properties file, but these

properties are FOR INTERNAL USE ONLY, and are not meant to be updated.

The following table lists these properties for reference only:

Property name Explanation

java.naming.factory.initial Default value :
org.apache.activemq.jndi.ActiveMQInitialContextFactory

FOR INTERNAL USE ONLY. DO NOT UPDATE THE VALUE OF
THIS PROPERTY.

java.naming.provider.url Default value :
tcp\://${uca.ebc.serverhost}\:${uca.ebc.jms.broker.port}

FOR INTERNAL USE ONLY. DO NOT UPDATE THE VALUE OF
THIS PROPERTY.

topic.uca-ebc-alarms Default value : com.hp.uca.ebc.alarms

FOR INTERNAL USE ONLY. DO NOT UPDATE THE VALUE OF
THIS PROPERTY.

topic.uca-ebc-events Default value : com.hp.uca.ebc.events

FOR INTERNAL USE ONLY. DO NOT UPDATE THE VALUE OF
THIS PROPERTY.

Table 3 - Properties for uca-ebc-injector in uca-ebc.properties file

19

2.2.3 uca-ebc-admin

This command-line tool provides a lot of options to configure, administer, and
monitor UCA for EBC Server, but also UCA for EBC value packs and scenarios. Most
of the features of this tool are also available using the UCA for EBC User Interface.

The following sections describe how to execute and how to configure the uca-ebc-
admin tool.

To execute the uca-ebc-admin tool, please use the following commands:

On both HP-UX, and Linux:

$ cd ${UCA_EBC_HOME}/bin

$ uca-ebc-admin <options>

<options> is a list of valid options for the uca-ebc-admin tool (both main options
and sub-options)

Since UCA-EBC V2.0, it is possible to have multiple instances running on a same
machine. If not specified, the uca-ebc-admin tool applies to the default instance.
Otherwise, the instance to administer can be specified with the -i <instance
name> option. This option must be the first option listed.

The following table lists the main options of the uca-ebc-admin tool (sub-options
can be used alongside these main options, the list of which is described further):

Option name Description

-h, --help This option displays the uca-ebc-admin tool usage
message

-i <instance-name> This option sets the instance of UCA for EBC to
administer. Instance <instance-name> must exist. If
used, this option must be the first option.

-a, --audit This option dumps full audit information (including
status, performance information):

 information on UCA EBC instance:

o Value pack manager

o Collector

o Dispatcher

o Action Threads, Stats, Queue

o Alarm forwarders

 Information on value packs

o Mediation flows

o Db flows

 Information on scenarios

o Filters

o Queue

o Working Memory

o Scenario/Watchdog threads

This option always applies to all value packs and
scenarios.

20

Option name Description

-s, --stats This option dumps specific statistics information
(including status and some performance
information) on all value packs and scenarios or a
specific value pack or scenario depending on the
sub-options used.

 See Notes: (1) (2) (3)

-l, --list This option lists all Value Packs and Scenarios

-lg, --log4j This option reloads the UCA for EBC log4j
configuration file

-p, --perf This option displays performance measurements.

-w, --workingMemory This option dumps the working memory of one or
more scenarios.

By default it applies to all scenarios of all value
packs except if sub-options are used.

 See Notes: (1) (2) (3)

-c, --clean This option cleans the working memory (retracts all
facts) of one or more scenarios.

By default it applies to all scenarios of all value
packs except if sub-options are used.

 See Notes: (1) (2) (3)

-r, --reload This option reloads the rule engine of one or more
scenarios or reloads a specific rules file.

By default this option reloads the rule engine of all
scenarios of all value packs except if sub-options
are used.

 See Notes: (1) (2) (3) (4)

-rc, --reloadConf This option reloads the configuration files. The files
to be reloaded can be chosen between the:
- whole set of files of all actives value packs
- whole set of files of a single active value pack
- whole set of files concerning a single scenario
- a single file within a scenario when used in
conjunction with the –conf sub-option.

 See Notes: (1) (2) (3) (5)

-dep, --deploy This option deploys a value pack stored in the
${UCA_EBC_INSTANCE}/valuepacks directory into
the ${UCA_EBC_INSTANCE}/deploy directory.

This option applies to the selected value pack.

 See Note: (2)

Once deployed, the value pack can be started by
executing the uca-ebc-admin tool with the -start, --
start option (if UCA for EBC is already running) or by
starting UCA for EBC (if UCA for EBC is stopped).

21

Option name Description

-undep, --undeploy This option undeploys a value pack from the
${UCA_EBC_INSTANCE}/deploy directory and creates
an archive (ZIP file) of it in the
${UCA_EBC_INSTANCE}/valuepacks directory. The
zipped value pack that was previously present in
the ${UCA_EBC_INSTANCE}/valuepacks directory is
moved to the ${UCA_EBC_INSTANCE}/archive
directory and a timestamp is added to the file name.

This option applies to the selected value pack.

 See Note: (2)

Once the value pack has been undeployed, it can be
deployed back again by using the -deploy, --deploy
option.

-start, --start This option starts a value pack.

This option applies to the selected value pack.

 See Note: (2)

-stop, --stop This option stops a value pack.

This option applies to the selected value pack.

 See Note: (2)

-d, --disable This option disables:

 either rule engine logging (if -rl,--
ruleLogging option is also selected)

 or scenario logging (if -sl,--
scenarioLogging option is also selected).

-e, --enable This option enables:

 either rule engine logging (if -rl,--
ruleLogging option is also selected)

 or scenario logging (if -sl,--
scenarioLogging option is also selected).

-rl, --ruleLogging Used in conjunction with either the –d, --disable or –
e, --enable options, this option enables or disables
rule engine logging for one or more scenarios.

By default it applies to all scenarios of all value
packs except if sub-options are used.

 See Notes: (1) (2) (3)

-startflow, --startflow This option starts a mediation flow.

Used with the -vpn <value pack name> and –vpv
<value pack version> sub-options, this option
applies to all the mediation flows of the selected
value pack.

Used with the -vpn <value pack name>, –vpv <value
pack version>, and –flow <flow name> sub-options,
this option applies to the selected mediation flow of
the selected value pack.

22

Option name Description

-stopflow, --stopflow This option stops a mediation flow.

Used with the -vpn <value pack name> and –vpv
<value pack version> sub-options, this option
applies to all the mediation flows of the selected
value pack.

Used with the -vpn <value pack name>, –vpv <value
pack version>, and –flow <flow name> sub-options,
this option applies to the selected mediation flow of
the selected value pack.

-resyncflow, --resyncflow This option resynchronizes a mediation flow.

Used with the -vpn <value pack name> and –vpv
<value pack version> sub-options, this option
applies to all the mediation flows of the selected
value pack.

Used with the -vpn <value pack name>, –vpv <value
pack version>, and –flow <flow name> sub-options,
this option applies to the selected mediation flow of
the selected value pack.

-statusflow, --statusflow This option displays the status of a mediation flow.

Used with the -vpn <value pack name> and –vpv
<value pack version> sub-options, this option
applies to all the mediation flows of the selected
value pack.

Used with the -vpn <value pack name>, –vpv <value
pack version>, and –flow <flow name> sub-options,
this option applies to the selected mediation flow of
the selected value pack.

-dumpfa, --
dumpfailedactions

Dumps failed actions of a scenario to the logs.

This option applies to the selected scenario.

 See Note: (3)

-retractfa, --
retractfailedactions

Retracts failed actions of a scenario from Working
Memory

This option applies to the selected scenario.

 See Note: (3)

-R, --restartServer Restart the UCA-EBC Server

 See Note: (6)

-S, --showServer Shows the status of UCA-EBC Server

 See Note: (6)

-T, --stopServer Stops the UCA-EBC Server

 See Note: (6)

23

Table 4 - uca-ebc-admin tool main options

Here’s the list of notes that applies to the above “uca-ebc-admin tool main options”
table:

Notes

(1) If no sub-option is selected, then the option applies to all value packs or all their
scenarios

(2) If -vpn <value pack name> and –vpv <value pack version> sub-options are
selected, then the option applies to the specified value pack or all its scenarios

(3) If -vpn <value pack name>, -vpv <value pack version>, and -scenario <scenario
name> sub-options are selected, then the option applies to the specified scenario

(4) If -vpn <value pack name>, -vpv <value pack version>, -scenario <scenario
name>, and -rule <rules file identifier> sub-options are selected, then the option
applies to the specified rules file.

(5) If -vpn <value pack name>, -vpv <value pack version>, -scenario <scenario
name>, and -conf <configuration file identifier> sub-options are selected, then the
option applies to the specified configuration file.

(6) If -i <instance name> option is selected, then the option applies to the specified
UCA-EBC Server instance. Otherwise it applies to the default UCA-EBC Server
instance.

The following table lists the sub-options that can be used in conjunction with the
main options of the uca-ebc-admin tool:

Option name Description

-vpn <value pack name> Used in conjunction with the -vpv sub-option,
this sub-option selects the value pack specified
by <value pack name> and <value pack version>.

This sub-option can be used alongside the
following options:

 -w, --workingMemory

 -c, --clean

 -r, --reload

 -dep, --deploy

 -undep, --undeploy

 -start, --start

 -stop, --stop

 -rl, --ruleLogging

 -sl, --scenarioLogging

 -startflow, --startflow

 -stopflow, --stopflow

 -resyncflow, --resyncflow

 -statusflow, --statusflow

 -s, --stats

24

Option name Description

-vpv <value pack version> Used in conjunction with the -vpn sub-option,
this sub-option selects the value pack specified
by <value pack name> and <value pack version>.

This sub-option can be used alongside the
following options:

 -w, --workingMemory

 -c, --clean

 -r, --reload

 -dep, --deploy

 -undep, --undeploy

 -start, --start

 -stop, --stop

 -rl, --ruleLogging

 -sl, --scenarioLogging

 -startflow, --startflow

 -stopflow, --stopflow

 -resyncflow, --resyncflow

 -statusflow, --statusflow

 -a, --audit

 -s, --stats

-scenario <scenario name> Used in conjunction with the -vpn, and -vpv sub-
options, this sub-option selects the scenario
specified by <value pack name>, <value pack
version>, and <scenario name>.

This sub-option can be used alongside the
following options:

 -w, --workingMemory

 -c, --clean

 -r, --reload

 -rl, --ruleLogging

 -sl, --scenarioLogging

-rule <rules file identifier> Used in conjunction with the -vpn, -vpv, and -
scenario sub-options, this sub-option selects
the rules file specified by <value pack name>,
<value pack version>, <scenario name>, and
<rules file identifier>.

This sub-option can be used alongside the
following options:

 -r, --reload

The rules file identifier is the name that is
associated with a rules file for a specific scenario
(see ValuePackConfiguration .xml file).

25

Option name Description

-flow <mediation flow name> Used in conjunction with the -vpn, and -vpv sub-
options, this sub-option selects the mediation
flow specified by <value pack name>, <value
pack version>, and <mediation flow name>.

This sub-option can be used alongside the
following options:

 -startflow, --startflow

 -stopflow, --stopflow

 -resyncflow, --resyncflow

 -statusflow, --statusflow

The mediation flow name is the name that is
associated with a specific mediation flow (see
ValuePackConfiguration .xml file).

-conf <configuration file
identifier>

Used in conjunction with the -vpn, -vpv, and -
scenario sub-options, this sub-option selects
the rules file specified by <value pack name>,
<value pack version>, <scenario name>, and
<configuration file identifier>.

This sub-option can only be used alongside the
following options:

 -rc, --reloadConf

The configuration file identifier is either:

 One of the keywords :

o filter

o mapper

o specific

o template

 the filename of a specific configuration
file

 the name of the template

If the keyword “specific” is used, all specific
configuration files are selected.

Table 5 - uca-ebc-admin tool sub-options

The uca-ebc-admin tool has some configuration properties defined in the
${UCA_EBC_INSTANCE}/conf/uca-ebc.properties file, but these

properties are FOR INTERNAL USE ONLY, and are not meant to be updated.

The following table lists these properties for reference only:

Property name Explanation

uca.ebc.jmx.url Default value :
service\:jmx\:rmi\://${uca.ebc.serverhost}/jndi/rmi\://$
{uca.ebc.serverhost}\:${uca.ebc.jmx.rmi.port}/uca-ebc

26

Property name Explanation

FOR INTERNAL USE ONLY. DO NOT UPDATE THE VALUE OF
THIS PROPERTY.

Table 6 - Properties for uca-ebc-admin in uca-ebc.properties file

2.2.4 uca-ebc-instance

The uca-ebc-instance command-line tool provides options to create, delete, list or
configure instances of UCA for EBC Server. This tool is not supported on Windows
platforms.

Instances are created in the ${UCA_EBC_DATA}/instances directory. At

installation, a single instance is created. It is named “default”.

To execute the uca-ebc-instance tool, please use the following commands:

On both HP-UX, and Linux:

$ cd ${UCA_EBC_HOME}/bin

$ uca-ebc-instance <options>

<options> is a list of valid options for the uca-ebc-instance tool

The following table lists the main options of the uca-ebc-instance tool:

Option name Description

-h This option displays the uca-ebc-instance tool
usage message

-l This option lists all available instances.

-a <instance-name> This option creates a new instance named
<instance-name>

 See Notes: (1) (2)

-d <instance-name> This option deletes an existing instance named
<instance-name>.

-r <old-name> <new-
name>

This option renames an existing instance named
<old-name> to <new-name>. Note that <new-
name> should not already exist.

-s <instance-name> This option sets the default instance to use to be:
<instance-name>.

 See Note: (3)

Table 7 - Main options for the uca-ebc-instance tool

Notes

(1) When creating a new instance, the root folder for the new instance is created.
This folder is referred to as ${UCA_EBC_INSTANCE} in this document.

(2) When creating a new instance, please make sure that there is no port conflict
with other applications running on your server.

27

 (3) When no “-i” option is provided with the uca-ebc, uca-ebc-admin, uca-ebc-
injector, or the uca-ebc-backup tool, the default instance is used.

 Please refer to chapter 3.1 “Multiple instances configuration” below for more

information on how to configure multiple instances of UCA for EBC.

2.2.5 uca-ebc-backup

This command-line tool provides the ability to backup and restore UCA for EBC
Server instances. This tool is not supported on Windows platforms.

To execute the uca-ebc-backup tool, please use the following commands:

On both HP-UX, and Linux:

$ cd ${UCA_EBC_HOME}/bin

$ uca-ebc-backup <command> <options>

<command> is one of [-b | -backup | -r | -restore | -l | -list]

<options> is a list of valid options for the command

2.2.5.1 Backing up

When the –b | -backup option is given to the uca-ebc-backup tool, a backup of the
data directory for a specific instance is performed (excluding the logs and work
subdirectories). In order to do so, the uca-ebc-backup tool compresses the instance
directory hierarchy and stores the resulting file into a directory of the users’ choice.

If the UCA for EBC Topology Extension is installed along with UCA for EBC Server and
the neo4j Server is configured as embedded, the neo4j subdirectory is also backed
up. The backup of the neo4j subdirectory is done using the neo4j Enterprise backup
utility, which performs a full backup without acquiring any locks, thus allowing for
continued operations on the neo4j instance.

Please make sure that UCA for EBC server is up and running when neo4j is
embedded before proceeding with a backup. ( See Note below)

To back up a UCA for EBC instance, please execute the following command:

On both HP-UX, and Linux:

$ cd ${UCA_EBC_HOME}/bin

$ uca-ebc-backup –b|-backup <options>

The following table lists the options of the uca-ebc-backup tool for backing up UCA
for EBC instances:

Option name Description

-h This option displays the uca-ebc-backup tool usage
message

-i <instance-name> This option specifies the instance of UCA for EBC to
backup. If it is not specified, the default instance is
used.

-f|-from <directory> This option specifies the UCA for EBC data directory.
If it is not specified, the ${UCA_EBC_DATA} directory
is used.

28

Option name Description

-t|-to <directory> This option specifies the directory where to store
the backup file. If it is not specified, the
${UCA_EBC_DATA}/backup directory is used.

-n|-name <name> This option specifies the name of the file to use as
the backup file. If it is not specified, the name of the
file is generated automatically using the following
pattern: %instance-%date-%time.

Table 8 - Options for backing up UCA for EBC instances using the uca-ebc-
instance tool

Note

When UCA for EBC is not running during the backup procedure, it is not a problem: a
warning is displayed but the neo4j database is backed up properly.

Important: if your neo4j database is located outside of the ${UCA_EBC_INSTANCE}
directory (for example if you set the value of the uca.ebc.topology.location
property to /my-absolute-path in the ${UCA_EBC_INSTANCE}/conf/uca-
ebc.properties file), the backup tool will keep a copy in a subdirectory of the
${UCA_EBC_INSTANCE} directory

2.2.5.2 Restoring

When the –r | -restore option is given to the uca-ebc-backup tool, a specific
instance of UCA for EBC is restored from a compressed file previously created by
the uca-ebc-backup tool.

Restoring a backup file is only supported when UCA for EBC server is not running.
When UCA for EBC server is running, restoring a backup will result in unexpected
behavior.

Restoring a backup of a UCA for EBC instance results in the current configuration of
neo4j being replaced by the backup. ( See Note (1) below)

To restore a UCA for EBC instance from a backup file, please use the following
command:

On both HP-UX, and Linux:

$ cd ${UCA_EBC_HOME}/bin

$ uca-ebc-backup –r|-restore –name filename <options>

The following table lists the options of the uca-ebc-backup tool for restoring UCA
for EBC instance backup files:

Option name Description

-h This option displays the uca-ebc-backup tool usage
message

-n|-name <name> This option is mandatory and specifies the fully
qualified name of the backup file to restore.

-t|-to <directory> This option specifies the UCA for EBC data directory
where to restore the backup file. If it is not
specified, ${UCA_EBC_DATA} is used.

 See Note below

29

Table 9 - Options for restoring UCA for EBC instances using the uca-ebc-instance
tool

Note

(1) The restore mechanism does restore the neo4J DB in the
${UCA_EBC_INSTANCE}/neo4j directory which is the default location of the
neo4j DB.
If you have the location of neo4j DB outside of ${UCA_EBC_INSTANCE} (for
example if you specified uca.ebc.topology.location=/my-absolute-path in the
uca-ebc.properties file), you will have to manually copy the contents of the
neo4j subdirectory to the /my-absolute-path directory.

(2) Be careful! The backup file contains the instance name. If an instance with the
same name exists when an instance is restored, the existing instance will be
overwritten.

However, please note that the current logs and work directories are not
removed.

2.2.5.3 Listing the available backups

When the –l | -list option is given to the uca-ebc-backup tool, all compressed
backup files are listed.

It is helpful to run this command before restoring a backup to know what backup
files are available. It may also be helpful if you need to do some cleanup of the
backup files.

The list is sorted by creation time. It is up to the end-user to clean the backup
directory when backup files become irrelevant and should be removed.

To list all available UCA for EBC instance backup files, please use the following
command:

On both HP-UX, and Linux:

$ cd ${UCA_EBC_HOME}/bin

$_uca-ebc-backup –l|-list <options>

The following table lists the options of the uca-ebc-backup tool for listing available
backup files:

Option name Description

-h This option displays the uca-ebc-backup tool usage
message

-f|-from <directory> This option specifies the directory where the backup
files are stored. If it is not specified, the
${UCA_EBC_DATA}/backup directory is used.

30

Table 10 - Options for listing the available UCA for EBC instance backups using
the uca-ebc-instance tool

2.3 UCA for EBC User Interface
In addition to the command-line tools, the web-based user interface of UCA for EBC
also provides administration, monitoring and troubleshooting capabilities for the
UCA for EBC product.

Note

 For more information on how to configure UCA for EBC at the value pack or

scenario level please refer to: [R3] HP UCA for EBC User Interface Guide[R2] HP UCA
for EBC Value Pack Development Guide

31

Chapter 3

UCA for EBC Configuration

UCA for EBC can be configured using properties located in configuration files.

The following chapters describe all the properties that can be set to configure UCA
for EBC at the application level using configuration files (usually located in the
${UCA_EBC_INSTANCE}/conf/ folder). Additional configuration can be

performed at the value pack and scenario level.

Note

 For more information on how to configure UCA for EBC at the value pack or

scenario level please refer to: [R2] HP UCA for EBC Value Pack Development Guide

3.1 Multiple instances configuration
Since UCA-EBC V2.0, it is possible to configure multiple instances on a same server.
There is a command line tool for managing those instances: uca-ebc-instance.
Please refer to Chapter 2.2.4 “uca-ebc-instance” for more information on how to
use this tool.

When creating a new instance of UCA for EBC, the port numbers specified in the
${UCA_EBC_INSTANCE}/conf/uca-ebc.properties file are

automatically tuned so that they do not interfere with ports of existing instances of
UCA for EBC. They are adjusted based on default port numbers delivered in the
${UCA_EBC_HOME}/defaults/conf/uca-ebc.properties file.

For example, such ports may have following values (the port numbers in the
example below correspond to a 3rd instance of UCA for EBC):
uca.ebc.jms.broker.port=61866
uca.ebc.jmx.rmi.port=1300
uca.gui.port=9088

However, you have to make sure that the above ports do not conflict with ports
used by other applications on your server.

If you have added other ports in your properties (for example for topology
extension), please make sure to tune these ports accordingly.

uca.ebc.topology.webPort=7675

In the same way, the port numbers in the ${UCA_EBC_INSTANCE}/conf/uca-
ebc-log4j.xml file are automatically tuned.

The Port property for the CHAINSAW appender specified in the
${UCA_EBC_INSTANCE}/conf/uca-ebc-log4j.xml file should be

different for each instance of UCA for EBC:

32

 <param name="Port" value="4745"/>

3.2 Configuration files

3.2.1 uca-ebc.properties file configuration

The ${UCA_EBC_INSTANCE}/conf/uca-ebc.properties file contains the

different properties that can be set for an instance of UCA for EBC Server.

The following tables list the different properties that can be set:

Property name Explanation

uca.ebc.serverhost Default value : localhost

This property defines the local host name as used by the
JMX (administration) and JMS (alarm Broker) connection
bindings.

The value ‘localhost’ is usually enough, but it can be
changed to enter the host fully qualified DNS name or an
IP address (especially if the server has several IP
interfaces), depending on whether UCA for EBC Server
should bind to one specific DNS Name/IP Address or all
DNS Names/IP Addresses configured on the server.

uca.ebc.jms.broker.port Default value : 61666

The port used by the JMS Broker.

The value of this property can be set to an alternate port
number in case of port number conflict with another
application on your system.

uca.ebc.jmx.rmi.port Default value : 1100

The port used by RMI for JMX connections.

The value of this property can be set to an alternate port
number in case of port number conflict with another
application on your system.

uca.gui.port Default value : 8888

The local port number used by the embedded UCA for
EBC User Interface web server. The value of this property
can be set to an alternate port number in case of port
number conflict with another application on your
system.

The URL for connecting to the UCA for EBC User interface
is the following:

http://<hostname or IP address>:<port #>/uca

<hostname or IP address> is the actual hostname (full
DNS name) or the IP address of the UCA for EBC Server
system.

<port #> is the port number for UCA for EBC User
Interface set by the uca.gui.port property (By default:
8888 for the default instance of UCA for EBC).

33

Table 11 - Host and Port # properties in the uca-ebc.properties file

If you change the uca.ebc.serverhost, or uca.ebc.jms.broker.port properties, the
UCA for EBC Channel Adapter configuration must be changed accordingly (only if
you use OSS Open Mediation as mediation layer). The uca-ebc-ca.properties file of
the UCA for EBC Channel Adapter must be checked and changed if required:

UCA EBC Server to connect to
uca.ebc.jms.broker.host=localhost
uca.ebc.jms.broker.port=61666

The default location for the uca-ebc-ca.properties file of the UCA for EBC Channel
Adapter is the following:

/var/<OSS Open Mediation root

directory>/containers/instance-0/ips/uca-ebc-ca-

3.3/etc/uca-ebc-ca.properties

Where:

 <OSS Open Mediation root directory> stands for the OSS Open

Mediation installation root directory, which, by default, translates to the
/opt/openmediation-71 directory

 instance-0 is the OSS Open Mediation container instance folder name.

Depending on you configuration, the container number could be different than
0. If this is the case, please adjust the name of the container instance folder
accordingly

 For full details on how to change this file, please refer to: [R4] HP UCA for EBC

Installation Guide.

34

Property name Explanation

uca.gui.webapp Default value: webapp/uca-expert-ui.war

The location of the Web application ARchive file of the
UCA for EBC User Interface.

uca.ebc.rest.api Default value: webapp/uca-ebc-rest-api.war

This value is by default commented. This is the
location of the Web application ARchive file of the
UCA for EBC REST Interface.

 For more information, please refer to: [R1] HP
UCA for EBC Reference Guide

Table 12 - Web GUI properties in the uca-ebc.properties file

Property name Explanation

collector.logger.enabled Default value: false

When set to true, collector logging is enabled. All
alarms sent by OSS Open Mediation to UCA for EBC
and alarms injected into UCA for EBC using the uca-
ebc-injector tool, will be logged to a file at the
following location:
${UCA_EBC_INSTANCE}/logs/uca-ebc-

collector.log

collector.measurementr
ate.enabled

Default value: false

When set to true, event rate measurement is enabled
for the UCA for EBC collector component. The
collection statistics data are available either through
JMX (using the standard Java jconsole or jvisualvm
tool for example), the uca-ebc-admin tool, or the UCA
for EBC User Interface.

collector.messages.valid
ation

Default value: true

When set to true, validation of all events (Alarms)
coming into UCA for EBC is enabled. Validation errors
are reported in the statistics of the Collector both at
the Java JMX Console and UCA for EBC User Interface.

Validation errors can occur when Alarms that do not
conform to the UCA for EBC Alarm XML schema are
received by UCA for EBC.

 For more information on the UCA for EBC Alarm
XML schema, please refer to: [R1] HP UCA for EBC
Reference Guide.

Table 13 - Collector properties in the uca-ebc.properties file

35

Property name Explanation

received.events.logger.enabled Default value: false

When set to true, logging is enabled. All events
collected by UCA for EBC through the UMB UCA
adapter, will be logged to a file at the following
location:
${UCA_EBC_INSTANCE}/logs/uca-

ebc-received-events.log

Table 14 – UMB Received Events

Property name Explanation

action.threads Default value: 20

This property defines the size of the thread pool size
(in number of threads) of the UCA for EBC Action
Manager component. These threads are in charge of
processing asynchronous actions. This property can
be tuned up/down in case you need more/less
threads to process a large/small number of
asynchronous actions in parallel.

action.timeout Default value: 60000 (ms)

This property defines the default timeout for actions
(in milliseconds) processed by the UCA for EBC Action
Manager component. If an action exceeds the
timeout, then the action fails with a status
explanation indicating that a timeout has run out.

This default action timeout can be overwritten for any
single action by using the public void
setActionTimeout(int actionTimeout)
method of any Action object. The actionTimeout
parameter is also in milliseconds.

Table 15 - Action Manager properties in the uca-ebc.properties file

36

Property name Explanation

engine.logger.enabled Default value: false

When set to true, scenario-specific Drools engine
logging is enabled. This setting affects all scenarios
of all value packs.

Scenario-specific engine log files are named
logEngine_<scenario name>.log and are
located in the ${UCA_EBC_INSTANCE}/logs
directory. Scenario-specific engine log files contain
standard Drools engine log entries specific to a
scenario.

These log files can be easily displayed in Eclipse IDE
using the Audit view, provided you have installed
the Drools Eclipse plugin. This view is show by
default if you switch to the Drools perspective.

engine.logger.interval Default value: 1000

This property represents the interval (in
milliseconds) at which engine log entries are written
to the scenario-specific engine log.

Table 16 - Rule Engine logger properties in the uca-ebc.properties file

The uca-ebc.properties file also contains topology related properties. These
properties, prefixed either uca.ebc.topology or neo4j, are related to the UCA for
EBC Topology Extension product. These properties are described in the UCA for EBC
Topology Extension guide.

 For more information on how to set these properties to configure the UCA for

EBC Topology Extension product, please refer to: [R5] HP UCA for EBC Topology
Extension Guide.

The property named uca.ebc.version in the uca-ebc.properties is no more

used by the UCA for EBC Server product: 3.3.

Note

UCA for EBC Server must be restarted in order for any change to the uca-

ebc.properties file to be taken into account.

For non-stop update of some of the properties, you can use the uca-ebc-admin
tool, or the JMX interface (with jconsole or jvisualvm).

 Please see section 2.2.3 “uca-ebc-admin” for more information on the list of

properties that can be updated using the uca-ebc-admin command-line tool.

 Please see section 5.1.3 “JMX Console” for more information on the list of

properties that can be updated at the Java JMX Console.

3.2.2 ActionRegistry.xml file configuration

UCA for EBC value pack scenarios have the ability to send action requests to be
executed by the mediation layer associated with the UCA for EBC Server:

37

 Either OSS Open Mediation V7.2

 Or UMB V1.0

Whether the actions are sent to OSS Open Mediation or to UMB depends on the
action reference used by the action. Since UCA for EBC V3.3 there are two types of
action references that can be defined in the ActionRegistry.xml file:

 OSS Open Mediation action references

 UMB action references

If an action is created based on an OSS Open Mediation action reference then it will
be executed on OSS Open Mediation. On the other hand, if the action is created
based on an UMB action reference then it will be executed on UMB.

The next chapters will describe how to create both OSS Open Mediation and UMB
action references.

Note

In order for UMB actions to be used, it is necessary that the embedded UCA for EBC
UMB Adapter be started, i.e. the use.new.generation.adapter property
must be set to true in the uca-ebc.properties file.

The actions are executed by an OSS Open Mediation Channel Adapter (or UMB
Adapter) on the mediation layer. Action replies are then returned to the scenario
that sent the action requests.

Figure 1 - ActionRegistry.xml file

It is important to notice that there are 2 sections in the ActionRegistry.xml

file. A first section for OSS Open Mediation action, and a second section for UMB
actions. Action references can be defined in both sections but the name of action

38

references throughout the whole file must be unique: an OSS Open Mediation action
reference cannot have the same name as an UMB action reference.

The default configuration for this file can be retrieved from the
${UCA_EBC_HOME}/defaults/conf folder in case you want to revert back to

the default configuration.

The ActionRegistry.xml file is an UCA for EBC application level configuration

file. It is shared by all UCA for EBC value packs running on UCA for EBC Server.

Note

UCA for EBC Server must be restarted in order for any change to the
ActionRegistry.xml file to be taken into account, unless you use the Java

JMX Console to refresh the UCA for EBC Action Manager with the contents of the
ActionRegistry.xml file.

 Please see 5.1.3.1 “Monitoring UCA for EBC internal components” to learn how

to refresh the UCA for EBC Action Manager with the contents of the
ActionRegistry.xml file using the Java JMX Console.

3.2.2.1 Defining OSS Open Mediation action references

UCA for EBC value pack scenarios use web services to communicate with the Action
Service web service of a Channel Adapter, typically the UCA for EBC Channel
Adapter.

For these actions to be properly routed to the mediation layer and then to the
correct Channel Adapter and target application, the file
${UCA_EBC_INSTANCE}/conf/ActionRegistry.xml must be configured

correctly.

The OSS Open Mediation section of the ActionRegistry.xml file defines

“mediation value packs”, and “action references” for these mediation value packs.
The following sections will describe in detail how to configure the
ActionRegistry.xml file in terms of “mediation value packs”, and “action

references”

Defining (OSS Open Mediation) Mediation Value packs

Each “mediation value pack” defined in the ActionRegistry.xml file describes

the properties of a gateway to access the Action Service web service on a UCA for
EBC Channel Adapter deployed on OSS Open Mediation V7.2.

This gateway will be able to process action requests on the mediation layer by
forwarding the action requests to the proper Channel Adapter on OSS Open
Mediation V7.2 for processing.

Each OSS Open Mediation “mediation value packs” is defined by an
<MediationValuePack …>…</MediationValuePack> XML element.

Each <MediationValuePack …>…</MediationValuePack> XML element

defined in the ActionRegistry.xml file has the following attributes:

 MvpName: You can give any value to this property (the value is not bound to
anything). However, it is recommended to use the name of the Channel
Adapter that will be targeted by the action requests. For example:

o “temip” (as in TeMIP Channel Adapter) or

o “exec” (as in Exec Channel Adapter)

39

 MvpVersion: You can give any value to this property (the value is not bound
to anything). However, it is recommended to use the version of the
Channel Adapter that will be targeted by the action requests. For example:

o 1.0 or

o 2.1 or

o etc…

 brokerURL: This property contains the correct URI for connecting to the JMS
Broker of the OSS Open Mediation V7.2 container instance that contains a
UCA for EBC Channel Adapter. By default the port number of the JMS
Broker of OSS Open Mediation V7.2 container 0 is 10000. To verify what
port number is used for your OSS Open Mediation V7.2 container instance,
please check the value of the activemq.port property in the
/var/opt/openmediation-V71/containers/instance-

<instance number>/conf/servicemix.properties file.

JMS Broker URIs have the following pattern:

tcp://<hostname or IPaddress>:<port#> or

failover://tcp://<hostname or IPaddress>:<port#> for the failover

URI

where:

<hostname or IP address> is the actual hostname (full DNS name) or the IP
address of the OSS Open Mediation V7.2 system.

<port #> is the port number of the JMS Broker of the OSS Open Mediation
V7.2 container instance that contains a UCA for EBC Channel Adapter. The
default port # is 10000 for container instance 0.

The brokerURL property is used to connect to the Alarms JMS topic of the
UCA for EBC Channel Adapter when using the standard UCA for EBC
OpenMediationAlarmForwarder Java class for forwarding alarms to OSS
Open Mediation V7.2.

 For more information on how to forward alarms, please refer to: [R2] HP UCA

for EBC Value Pack Development Guide

 url: This property contains the correct URL for connecting to the Action
Service web service on a UCA for EBC Channel Adapter. For example, if the
UCA for EBC Channel Adapter is on localhost and uses the default port
number for its Action Service web service:

http://localhost:26700/uca/mediation/action/ActionService?WSDL

An incorrect value for the url property will result in action requests not
being able to be processed on the mediation layer. Please verify this url
using a web browser before using it in the ActionRegistry.xml file.

Note

Action Service web service URLs have the following pattern:

http://<hostname or

IPaddress>:<port#>/uca/mediation/action/ActionService?WSDL

40

<hostname or IP address> is the actual hostname (full DNS name) or the IP
address of the UCA for EBC CA system.

<port #> is the port number for UCA for EBC CA Action Service, 26700 by
default. This port number is set in the <OSS Open Mediation variable root
directory>/containers/instance-<container instance number>/ips/uca-ebc-
ca-<UCA for EBC CA version>/etc/action-service.xml file (see the value of
the locationURI property of the cxfbc:consumer XML entity).

<OSS Open Mediation variable root directory> usually translates to
/var/opt/openmediation-V71.

Two mediation value packs are defined by default in the ActionRegistry.xml

file:

 A “temip” services mediation value pack, providing a gateway to a TeMIP

Channel Adapter for executing TeMIP Alarm Object directives, TeMIP
Trouble Ticket directives, and alarm collection flow
creation/deletion/resynchronization

 An “exec” services mediation value pack, providing a gateway to an Exec

Channel Adapter for executing command-line interface
executables/commands

Each mediation value pack can contain one or more action references. Action
references are explained in the next section.

Defining (OSS Open Mediation) Action References

OSS Open Mediation action references define references to be used in the Drools
rules files associated to scenarios of UCA for EBC value pack for executing
synchronous/asynchronous action on products (TeMIP for example) connected to
OSS Open Mediation V7.2 via their own Channel Adapter.

Below is an example of how action references can be used in rules files (we assume
in this example that an action reference called
“TeMIP_AO_Directives_localhostNOM” has been defined in the

ActionRegistry.xml file)

Basically you need to write the following code in your rules file:

Action action = new

Action("TeMIP_AO_Directives_localhostNOM");

The action reference called “TeMIP_AO_Directives_localhostNOM”

is used when creating an Action Java Object in the rules files.

Once an Action object is created, you can specify the parameters that will
define what action to perform, in the following example a TeMIP Alarm
Object directive:

action.addCommand("directiveName", "ACKNOWLEDGE");

action.addCommand("entityName", a.getIdentifier());

action.addCommand("UserId", "UCA EBC");

Then, you need to execute the Action. Both synchronous and asynchronous
actions are possible:

41

Either:

//synchronous execution

action.executeSync();

Or:

//asynchronous execution

action.executeAsync(AODirectiveKey.ENTITY_NAME);

 For more information on synchronous and asynchronous actions

(including how to use synchronization keys for asynchronous actions),
please refer to: [R1] HP UCA for EBC Reference Guide.

OSS Open Mediation action references are defined in the ActionRegistry.xml

file inside a <MediationValuePack>…</MediationValuePack> section.

Each OSS Open Mediation action reference is defined by an
<Action>…</Action> XML element.

Each <Action>…</Action> XML element defined in the
ActionRegistry.xml file has the following properties:

 actionReference: this is the name of the action reference to use in the
Drools rules files associated with scenarios of UCA for EBC value pack

An incorrect value for the actionReference property will result in action
requests not being able to be processed on the mediation layer. Please
verify that value of the actionReference property is in line with the action
reference used in the Drools rules files of the scenarios of your UCA for EBC
value pack(s).

Each <Action>…</Action> XML element defined in the

ActionRegistry.xml file also defines the following sub-elements:

 serviceName: this is a valid name of service (type of action) implemented by
the target Channel Adapter (TeMIP CA, Exec CA, etc…). This service name is
determined by the target Channel Adapter and the services it provides. For
example:

o The TeMIP Channel Adapter provides the following services:

 aoDirective, for executing Alarm Object (AO) directives

 ttDirective, for executing Trouble Ticket (TT)

directives

 subscriptionManagement, for executing alarm

collection flow creation/deletion/resynchronization

o The Exec Channel Adapter provides the following services:

 commandsExecution, for executing command-line

interface executables/commands

An incorrect value for the serviceName property will result in action
requests not being able to be processed on the mediation layer. Please
verify that value of the serviceName property is valid for the target Channel
Adapter by reviewing the target Channel Adapter documentation.

 NmsName: hostname or IP address of the system targeted by the target
Channel Adapter. This property is used for information only. It is not bound
to anything.

42

3.2.2.2 Defining UMB action references

From UCA for EBC point of view, UMB action references work exactly the same way
as OSS Open Mediation action references.

UMB action references define references to be used in the Drools rules files
associated to scenarios of UCA for EBC value pack for executing
synchronous/asynchronous action on products (TeMIP for example) connected to
UMB V1.0 via their own UMB Adapter.

Below is an example of how action references can be used in rules files (we assume
in this example that an action reference called
“TeMIP_AO_Directives_localhost” has been defined in the
ActionRegistry.xml file)

Basically you need to write the following code in your rules file:

Action action = new Action("TeMIP_AO_Directives_localhost");

The action reference called “TeMIP_AO_Directives_localhost” is

used when creating an Action Java Object in the rules files.

Once an Action object is created, you can specify the parameters that will
define what action to perform, in the following example a TeMIP Alarm
Object directive:

action.addCommand("directiveName", "ACKNOWLEDGE");

action.addCommand("entityName", a.getIdentifier());

action.addCommand("UserId", "UCA EBC");

Then, you need to execute the Action. Both synchronous and asynchronous
actions are possible:

Either:

//synchronous execution

action.executeSync();

Or:

//asynchronous execution

action.executeAsync(AODirectiveKey.ENTITY_NAME);

 For more information on synchronous and asynchronous actions

(including how to use synchronization keys for asynchronous actions),
please refer to: [R1] HP UCA for EBC Reference Guide.

43

UMB action references are defined in the ActionRegistry.xml file inside the

<UMBActions>…</UMBActions> section. Each UMB action reference is
defined by an <UMBAction … /> XML element.

Each <UMBAction … /> XML element defined in the ActionRegistry.xml

file has the following properties:

 actionReference: this is the name of the action reference to use in the
Drools rules files associated with scenarios of UCA for EBC value pack

An incorrect value for the actionReference property will result in action
requests not being able to be processed on the mediation layer. Please
verify that value of the actionReference property is in line with the action
reference used in the Drools rules files of the scenarios of your UCA for EBC
value pack(s).

 targetName: this is the name of the target UMB Adapter or UMB Adapter
Group of the action: either the name of an UMB Adapter or the name of an
UMB Adapter action group (if load balancing is used). Adapter names and
action group names are defined in the AdapterConfiguration.xml

file of UMB Adapters. If an UMB Adapter name is used, then the action will
be executed on a specific UMB Adapter. If an UMB Adapter Group name is
used, then the action will be executed on a randomly selected UMB
Adapter part of the group.

 targetActionName: this is the name of the type of action (action service) to
be executed on the UMB Adapter or UMB Adapter Group. Action services
are specific to each Adapter. They are defined in the
AdapterConfiguration.xml file of each Adapter. For example, the

UMB TeMIP Adapter defines the following action services:

o AOAction, for executing Alarm Object (AO) directives

o TTAction, for executing Trouble Ticket (TT) directives

o PassthroughAction, for executing any directive. The XML of

the request must be provided in TWS XML schema in the rawData
of the action request

An incorrect value for either the targetName or the targetActionName
property will result in action requests not being able to be processed on the
mediation layer. Please verify that values of the targetName and
targetActionName properties are valid by reviewing the
AdapterConfiguration.xml file of the targeted UMB Adapter(s).

3.2.3 uca-ebc-log4j.xml file configuration

The ${UCA_EBC_INSTANCE}/conf/uca-ebc-log4j.xml file is the Log4J

configuration file for the whole UCA for EBC application. It is a standard Apache
Log4J configuration file.(1)

This file contains three main sections where the following items are defined:

 Appenders: appenders mainly define where the log messages are sent, and
the pattern used for logging the messages. There are three main
appenders defined.

o CONSOLE: for logging to the console

o FILE: for logging to the ${UCA_EBC_INSTANCE}/logs/uca-

ebc.log file

44

o DB: for logging to a database. This log database is used for
displaying the logs on the UCA for EBC User Interface

In addition to the three main appenders, a sample CHAINSAW appender is
also provided for integration with the Apache Chainsaw GUI-based log
viewer. (2)

 Loggers: loggers are defined by Java package names. Each logger defines its
own log level and appender references. The loggers are grouped into
several sections (the different sections are identified by comments in the
file):

o Detailed Traces for Value Pack Scenarios

o Detailed Traces for UCA Main Components

o Detailed Traces for UCA Scenarios

o Detailed Traces for UCA Components

o Detailed Traces for UCA ClassLoader

o Third Party Products Internals

 Root: the root section defines the default log level and the default appender
references to use for logging

You can make your own changes to the ${UCA_EBC_INSTANCE}/conf/uca-
ebc-log4j.xml file, for example:

 Modifying existing appenders or creating new ones

 Modifying existing loggers: changing the log level or the appender
references

 Adding new loggers, for 3rd party products for example

 Adding new loggers for your own scenarios

 Modifying the default log level and appender references in the root section
of the file

Once you have made changes to the ${UCA_EBC_INSTANCE}/conf/uca-

ebc-log4j.xml file, you either need to restart UCA for EBC Server or reload the

Log4J configuration at the command-line using the uca-ebc-admin tool, the Java
console or the UCA for EBC User Interface.

There are several levels of logging provided by UCA for EBC: standard application
logging, and scenario specific rule logging. (3)

Log files (both standard application log file, and scenario specific log files) are
stored in the ${UCA_EBC_INSTANCE}/logs directory or at the UCA for EBC

User Interface.

Notes

(1)  Please see http://logging.apache.org/log4j/1.2/ to learn more about Apache

Log4J configuration files.

(2)  Please see http://logging.apache.org/chainsaw/index.html to learn more

about Apache Chainsaw.

 (3)  Please see section 6.1 “UCA for EBC Logging Mechanism” to learn about the

different levels of logging provided by UCA for EBC (standard application logging,

http://logging.apache.org/log4j/1.2/
http://logging.apache.org/chainsaw/index.html

45

and scenario specific rule logging) and to learn how to enable/disable and configure
these logs.

3.2.4 Additional configuration files

Some configuration files are present in addition to the
${UCA_EBC_INSTANCE}/conf/uca-ebc.properties,

${UCA_EBC_INSTANCE}/conf/ActionRegistry.xml, and
${UCA_EBC_INSTANCE}/conf/uca-ebc-log4j.xml files.

3.2.4.1 UCA EBC Spring Framework configuration files

UCA for EBC is integrated with Spring Framework. The main components of UCA for
EBC are defined using Spring Framework. Three configuration files located in the
${UCA_EBC_HOME}/conf directory are present by default:

 application-context.xml

 main-context.xml

These files are for INTERNAL USE ONLY and should not be modified.

However, in rare case, for instance when you need to support storing events into a
single DB for multiple Value Packs, you may add some Spring beans in those files.

3.2.5 How to revert back to the default configuration files

A reference copy of each of the configuration files present in the
${UCA_EBC_INSTANCE}/conf folder can be found in the

${UCA_EBC_HOME}/defaults/conf folder.

In case you want to revert back the default configuration of any of the configuration
files present in the ${UCA_EBC_INSTANCE}/conf folder, you just need to copy

the reference copy of the configuration file from the
${UCA_EBC_HOME}/defaults/conf folder to the

${UCA_EBC_INSTANCE}/conf folder.

Note

UCA for EBC Server must be restarted in order for any change to the configuration
files in the ${UCA_EBC_INSTANCE}/conf folder to be taken into account.

3.3 UCA-EBC UMB Mediation Adapter Configuration
The configuration requirements of the UCA-EBC UMB Mediation Adapter are the
same as any other UMB mediation adapter. It requires a properties file to set the
Adapter properties, the Hazelcast.xml file for the Common registry access, and the
AdapterConfiguration.xml file to define the provided services.

All the requested configuration files are searched in the UCA-EBC configuration
directory: ${UCA_EBC_DATA}/conf.

46

3.3.1 The properties file

As the UCA-EBC UMB Mediation Adapter is embedded in the UCA-EBC application,
there is no specific adapter.properties file for this mediation adapter.
Instead the properties are defined in the standard uca-ebc.properties file.

The following properties are defined by default in this file as follow:
###

UMB Mediation properties

use.new.generation.adapter=true

UMB Consumer properties

consumer.zookeeper.connect=localhost:2181

consumer.zookeeper.session.timeout.ms=6000

consumer.zookeeper.sync.time.ms=203

consumer.auto.commit.interval.ms=1000

consumer.auto.offset.reset=smallest

UMB Consumer properties

producer.metadata.broker.list=localhost:9092

producer.request.required.acks=1

###

Please refer to the [R7] HP UCA for EBC Installation and Configuration Guide for
details on how to configure the Adapter’s properties.

3.3.2 The hazelcast.xml file

The Adapter’s Hazelcast configuration file: hazelcast.xml defines how to

connect to the UCA for EBC Hazelcast instance(s).

Please refer to the [R7] HP UCA for EBC Installation and Configuration Guide for
details on how to configure the hazelcast.xml file.

3.3.3 The logging configuration file

The Adapter’s Log4j configuration is done through the standard UCA-EBC
configuration file: uca-ebc-log4j.xml

3.3.4 The AdapterConfiguration.xml file

The Adapter configuration file: AdapterConfiguration.xml defines the

Event flows that UCA-EBC provides.

Has for any other UMB Adapters the AdapterConfiguration.xml file defines

the adapter name (by default set to “UCA-EBC”). This name must be changed if the
solution is made of several UCA-EBC servers.

Defining static flows:

For static Flows the collectorClass must be set to:
com.hp.uca.expert.mediation.adapter.UcaStaticCollector

No flow parameters need to be defined.

Here is an example of Static Flow Service definitions for UCA-EBC:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<adapter name="UCA-EBC" version="1.0"

xmlns="http://hp.com/umb/config">

47

 <flowServices>

 <flow name="UcaStaticForwarderFlow" type="Static"

collectorClass="com.hp.uca.expert.mediation.adapter.UcaStaticCo

llector">

 </flow>

 <flow name="UcaStaticEventForwarderFlow" type="Static"

collectorClass="com.hp.uca.expert.mediation.adapter.UcaStaticCo

llector">

 </flow>

 </flowServices>

</adapter>

Note

The static flows provided by UCA-EBC do not support resynchronization.

Defining dynamic flows:

Contrary to static flows, with dynamic flows, parameters have to be defined.

Here is an example of a Dynamic Flow Service definition for UCA-EBC:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<adapter name="UCA-EBC" version="1.0"

xmlns="http://hp.com/umb/config">

 <flowServices>

 <flow name="DB-Flow" type="Dynamic"

collectorClass="com.hp.uca.expert.mediation.adapter.UcaDbCollec

tor">

 <parameters>

 <parameter key="vp" defaultValue="" />

 <parameter key="notifier" defaultValue="dbNotifier" />

 <parameter key="summarize" defaultValue="false" />

 <parameter key="eligibilityScope" defaultValue="true" />

 </parameters>

 </flow>

 </flowServices>

  For more information on DB Flow configuration, please refer to: [R1] HP UCA

for EBC Reference Guide

3.4 High-Availability (HA) configuration

3.4.1 Simple cluster configuration using NFS

The simplest cluster configuration is a set of (minimum 2) members UCA for EBC
servers accessing the same Storage Area Network providing access to a single data
storage.

To setup such a cluster configuration, the following steps are required:

1. Install UCA for EBC using the -d option to specify the same “data” directory. 
See Note (1)

For example, given that /shared/UCA-EBC is the NFS mount point for the UCA

for EBC data directory, you need to execute the following command on all servers:

48

[root] # install-uca-ebc.sh -d /shared/UCA-EBC

On first installation of UCA for EBC (on server1), the subdirectories under
/shared/UCA-EBC are automatically created. On subsequent installations (on

server2 and +), the subdirectories are not recreated because they already exist.
Using this method, you can install an extra server even if UCA for EBC is running on
another server.

2. Start UCA for EBC on the first server.  See Note (2)

[uca@server1] # uca-ebc start

Server1 Server2

SAN

/shared/UCA-EBC

3. When server1 is to be stopped for some reason, then server2 is able to recover
the work, once started.

[uca@server2] # uca-ebc start

Notes

(1) It is mandatory that the “uca” user account used to run UCA for EBC should have
the same uid / gid on all the servers sharing a same data directory. If this is not the
case, UCA for EBC will not be able to recover from one server to the other due to file
ownership issues. It is therefore recommended to use a NIS user account across
servers.

(2) Log and work files are stored in a shared NFS data storage. It is not supported to
have more than 1 UCA for EBC server instance running on the same data storage
due to possible file synchronization issues.

(3)  For more information on High-Availability setup, please refer to: [R1] HP UCA

for EBC Reference Guide

3.4.2 Neo4j database High-Availability (HA) configuration for
Topology Extension

The simplest configuration of neo4j is to have the database server embedded in
UCA for EBC server. As such, it can run only on a single machine, accessible through
a single port. When configured as embedded, the database is stored under the
${UCA_EBC_INSTANCE}/neo4j directory.

When a simple cluster configuration is used along with an embedded neo4j
topology, the High-Availability (HA) mechanism is implemented by the shared

49

location of the ${UCA_EBC_INSTANCE} directory which includes the neo4j

database. When a member of the cluster starts, it inherits the neo4j database state,
i.e. the topology state, from the last cluster member that stopped.

This solution does not use the HA mechanism of neo4j. ( see Note (1) below).

To deploy the UCA for EBC database, i.e. the neo4j database, in a multiple machine
setup, you have to tune the uca.ebc.topology property in the
${UCA_EBC_INSTANCE}/conf/uca-ebc.properties file, as follows:

uca.ebc.topology=external

This property is set by default to “embedded” but it needs to be changed to
“external” for HA configuration. ( see Note (1) below)

Neo4j HA can be set up to accommodate differing requirements for load, fault
tolerance and available hardware. The typical setup when running multiple Neo4j
instances in HA mode is: ( see Note (2) below)

 a HTTP REST load-balancer, namely HA proxy

 a single Neo4j master

 0 or more Neo4j slaves

 a mechanism for master election, namely a Coordinator cluster ( see Note
(3) below)

To configure UCA for EBC to use a Neo4j HA cluster, you need to setup the
uca.ebc.topology.serverhost and uca.ebc.topology.webPort properties in the
${UCA_EBC_INSTANCE}/conf/uca-ebc.properties file to be equal to

the Neo4J HA proxy configuration. For example:

uca.ebc.topology.serverhost=server3.local.domain
uca.ebc.topology.webPort=7474

Then, you have to configure the Neo4j cluster to run in HA mode. Please refer to the
Neo4j high-availability setup tutorial for more information. ( see Note (4) below)

Notes

(1) The “embedded” value for the uca.ebc.topology property in the
${UCA_EBC_INSTANCE}/conf/uca-ebc.properties file does not

currently support the neo4j HA mode.

(2) Suggested reading: http://docs.neo4j.org/chunked/stable/ha.html. Please note
that only neo4j-enterprise edition supports HA features.

(3) The Coordinator function is based on Apache Zookeeper service:
http://hadoop.apache.org/zookeeper/

(4) The Neo4j high-availability setup tutorial is available at the following URL:
http://docs.neo4j.org/chunked/stable/ha-setup-tutorial.html

http://docs.neo4j.org/chunked/stable/ha.html
http://hadoop.apache.org/zookeeper/
http://docs.neo4j.org/chunked/stable/ha-setup-tutorial.html

50

3.5 Backup and restore

3.5.1 Standalone UCA for EBC

A standalone UCA for EBC server is a server running on a single machine. If the UCA
for EBC Topology Extension is installed and configured, the neo4j server is running
embedded within UCA for EBC Server. ( see Note below)

On both HP-UX and Linux:

To perform a backup/restore, please use the uca-ebc-backup command line tool
(Please refer to Chapter 2.2.5 “uca-ebc-backup” for command usage).

On Windows:

To perform a backup/restore, as no command line tool is provided, please use the
following procedure:

For backups:

1. cd %UCA_EBC_DATA%

2. zip all directories (except logs and work) into a backup .zip file, and store it in a
safe place

For restores: (Please make sure that UCA for EBC is not running)

1. cd %UCA_EBC_DATA%

2. remove all directories (except logs and work)

3. unzip the backup .zip file that was created during the backup

Note

neo4j embedded server online backup feature must be activated.

This is done by setting the neo4j.config.online_backup_enabled property to true
in the ${UCA_EBC_INSTANCE}/conf/uca-ebc.properties configuration

file.

3.5.2 Clustered UCA for EBC

A clustered UCA for EBC server is a set of multiple servers running on separate
machines but using the same data directory under NFS. This is described in Chapter
3.4.1 Simple cluster configuration using NFS”.

As data is stored on a unique place, it is only necessary to perform the backup once
for the cluster, on any machine. To perform a backup/restore, please use the
procedure explained above (in Chapter 3.5.1 “Standalone UCA for EBC”) which is
applicable in a clustered context as well.

3.5.3 UCA for EBC with external topology server

A UCA for EBC server using an external neo4j topology server has to be backed up
(or restored) in two steps.

3.5.3.1 First step: backup/restore of UCA for EBC

To backup/restore UCA for EBC, use the procedure explained in Chapter 3.5.1
“Standalone UCA for EBC” above. This procedure will back up everything that is

51

stored in the UCA for EBC instance directory, except the neo4j database, which is
external.

3.5.3.2 Second step: backup/restore of neo4j database

When neo4j server is configured to be external to UCA for EBC, it is necessary to
backup/restore this external machine separately. Please be aware that the neo4j
backup utility is only available when using the Enterprise Edition of Neo4j ( see
Note (1) below).

Please follow the steps described below to perform a backup/restore of the neo4j
database.

For backups:

 Do a full backup using the neo4j-backup command line tool on a safe new
directory ( see Note (1) below)

For restores:

 Restore the backup by replacing the current database (usually stored in
${NEO4J_HOME}/data/graph.db) by the contents of the directory

generated during the backup.

Notes

(1) The neo4j-enterprise edition supports online backup only if the neo4j server has
been launched with the online_backup_enabled property set to true.
Suggested reading: http://neo4j.com/docs/1.9/operations-backup.html

(2) Note that if neo4j has been configured in High-Availability (HA) mode, you’ll
have to specify the -cluster option as specified at the following URL:
http://neo4j.com/docs/1.9/backup-ha.html

http://neo4j.com/docs/1.9/operations-backup.html
http://neo4j.com/docs/1.9/backup-ha.html

52

Chapter 4

UCA for EBC Monitoring

4.1 Monitoring the alarm flow in real-time
The purpose of monitoring the alarm flow is to offer any integrator and/or rules
designer (at development time) or any user (in production) the capability to better
understand what happens in the UCA for EBC engine (in particular in each rule
engine/working memory of a scenario).

A UCA for EBC solution can be complex including several values packs, each of them
containing several scenarios. At each level, filtering at the scenario level indicates
the scope of interest of the scenario, in terms of what type of events the scenario
will process.

Monitoring the alarm flow is key to a better understanding of what goes on inside
UCA for EBC in terms of processing of the alarm flow in real-time, when a complete
UCA for EBC solution, with possibly several value packs and scenarios, is deployed.

Monitoring the alarm flow involves taking measurements of the alarm flow at
several key processing points in the UCA for EBC solution:

 At the UCA for EBC Collector layer, i.e. alarm collection layer (this component
is the entry point for alarms/events into UCA for EBC)

 At the UCA for EBC Dispatcher layer, i.e. alarm dispatcher layer (this
component processes alarms/events sent by the UCA for EBC Collector and
dispatches them to value packs and scenarios)

 At the Value Pack layer

 At the Scenario layer, i.e. the Drools engine layer

The following figure explains the “points-of-control” where measurements of the
alarm flow are performed:

53

Figure 2 - UCA for EBC – Monitoring the Alarm Flow

Monitoring of the alarm flow is performed at the Collector layer, Dispatcher layer,
Value Pack layer and Scenario / Rule engine layer is shown in the above figure.

These measurements of the alarm flow are presented as statistics, and counters,
and can be displayed both at the Java JMX Console and at the UCA for EBC User
Interface (in the Troubleshooting / Statistics panel).

The following sections describe, for each layer of the UCA for EBC product, the
different ‘points-of-control’ where statistics about the alarm flow are available.
These statistics can help developers and integrators better understand how
scenarios consume the input Event/Alarm stream. Monitoring these statistics can
provide insight into the internal processing of a scenario in real time that can help
troubleshooting issues or possibly lead to improvements in terms of performance.

Note

 For more information on the UCA for EBC User Interface, please refer to: [R3]

HP UCA for EBC User Interface Guide

 Please see section 5.1.3 “JMX Console” for more information on the statistics,

and counters displayed at the Java JMX Console.

4.1.1 Collector layer

The Collector component is responsible for receiving and validating incoming
Events/Alarms from the mediation layer (when the mediation layer is OSS Open
Mediation V7.2) and forwarding them to the next layer (the Dispatcher layer). The
following indicators can help monitoring the alarm flow at the Collector layer in
real-time:

 How many objects (alarms) were received since startup

 The last time an object (alarm) was received

 How many errors occurred during alarm validation

54

 The last time an error occurred during alarm validation

Note

These statistics can be displayed both at the Java JMX Console and at the UCA for
EBC User Interface (in the Troubleshooting / Statistics panel).

 For more information on the UCA for EBC User Interface, please refer to: [R3]

HP UCA for EBC User Interface Guide

4.1.2 Dispatcher layer

The Dispatcher is responsible for storing incoming events (Alarms), analyzing and
dispatching these events to the running value packs and scenarios. The following
indicators can help monitoring the alarm flow at the Dispatcher layer in real-time:

 Current number of objects (alarms) dispatched

 Last time an object (alarm) has been dispatched

 Rate of alarms reception

Note

These statistics can be displayed both at the Java JMX Console and at the UCA for
EBC User Interface (5.1.2 - UCA for EBC Graphical User Interface).

4.1.3 Value Pack layer

Additional statistics regarding the alarm flow are available at the Value Pack layer:

 How many objects (alarms) were received since startup (per alarm type)

 Last time an object (alarm) was received

 Alarm input rate

 Percentage of events received by the Value Pack compared to the total of
events received by the UCA for EBC Dispatcher

Note

These statistics can be displayed both at the Java JMX Console and at the UCA for
EBC User Interface (5.1.2 - UCA for EBC Graphical User Interface).

4.1.4 Scenario/Engine layer

Additional statistics regarding the alarm flow are available at the Scenario (Drools
engine) layer:

 Number of facts* inserted into Working Memory since startup

 Current number of facts* in real-time

 Last time an object (alarm) was injected, retracted, modified in Working
Memory

 Number of facts* retracted from the Working Memory since start-up

 Number of facts* modified in Working Memory since start-up

 Rate of alarms reception

55

 Percentage of events inserted into Working Memory compared to the total
of events received by the Scenario (this indicator measures what
percentage of incoming events are filtered out by the scenario)

* Facts are Drools Working Memory objects. Once any Java object is inserted into
Drools Working Memory, it becomes a “Fact”.

Notes

These statistics can be displayed both at the Java JMX Console and at the UCA for
EBC User Interface (5.1.2 - UCA for EBC Graphical User Interface).

56

Chapter 5

UCA for EBC Troubleshooting

5.1 Troubleshooting tools
Below is the list of tools that you can use to troubleshoot UCA for EBC.

5.1.1 Log files

Log files can be of great help when troubleshooting issues with UCA for EBC. UCA
for EBC log files are located in the ${UCA_EBC_INSTANCE}/logs directory.

You can view the log files directly on the file system using any text file editor or you
could also use the UCA for EBC User Interface to view the logs. This latter method
for viewing the logs has the advantage of providing easy navigation and filtering
capabilities. The UCA for EBC application log can also be cleaned to focus on new log
messages only.

Configuration of the logs is driven by the content of the
${UCA_EBC_INSTANCE}/conf/uca-ebc-log4j.xml file (1). Several types

of logs are available, both at application level and at scenario level (2).

Note

(1)  Please refer to section 3.2.3 “uca-ebc-log4j.xml file configuration” to learn

more about the configuration of the ${UCA_EBC_INSTANCE}/conf/uca-
ebc-log4j.xml file.

(2)  Please see section 6.1 “UCA for EBC Logging Mechanism“ to learn about the

different levels of logging provided by UCA for EBC, how to enable/disable and how
to configure these logs.

Recommendation: logging has an impact on performance. To avoid issues, please
do not use too much logging on a production environment.

5.1.2 UCA for EBC Graphical User Interface

The UCA for EBC User Interface provides troubleshooting tools.

At each level, be it application level, value pack level or scenario level, a
troubleshooting panel is provided that contains information that will help to
troubleshoot issues with the UCA for EBC application, a specific value pack or a
scenario.

57

The following screenshot shows Troubleshooting/Log panel at application level:

Figure 3 - Troubleshooting/Log panel at Application level

Each troubleshooting panel at each level (application, value pack, and scenario)
contains two sub-panels:

 A “Statistics” subpanel that contains key performance indicators that help
understanding the behavior of UCA for EBC, a value pack or a scenario

 A “Logs” subpanel that displays the full UCA for EBC application logs, the
Value Pack logs or a scenario specific logs depending on the level.

58

The following screenshot shows Troubleshooting/Statistics panel at application
level:

Figure 4 - Troubleshooting/Statistics panel at Application Level

Note

 For more information on how to connect to the UCA for EBC User Interface or to

learn about the troubleshooting tools available in the UCA for EBC User Interface,
please refer to: [R3] HP UCA for EBC User Interface Guide

5.1.3 JMX Console

To start the Java JMX Console, either locally on the system hosting the UCA for EBC
Server or remotely from another system (in which case you will need to adjust the
JMX URL accordingly), please execute the following commands:

On both HP-UX, and Linux:

$ $JAVA_HOME/bin/jconsole

Select the “Remote Process” radio button and type the following URL in the input
text field:

service:jmx:rmi://<hostname or IP address>/jndi/rmi://<hostname or IP

address>:<port #>/uca-ebc

<hostname or IP address> is the actual hostname (full DNS name) or the IP address
of the UCA for EBC Server system. The default value is localhost.

<port #> is the port number for UCA for EBC Server RMI port, 1100 by default for the
default instance. Please check the value of the “uca.ebc.jmx.rmi.port” property in

59

the ${UCA_EBC_INSTANCE}/conf/uca-ebc.properties file if you’re

unsure what RMI port number your UCA for EBC Server is using.

Figure 5 - Java JMX Console: Connecting to UCA for EBC Server

Then click on the “Connect” button.

Once you’re connected to the Java JMX console for UCA for EBC, you can go to the
MBeans tab to get access to the managed Java beans that have been defined
specifically for administering UCA for EBC.

All managed beans for UCA for EBC are located under the uca_ebc folder, as seen in
the following screenshot:

60

Figure 6 - Java JMX Console: UCA for EBC MBeans

Under the uca_ebc folder, there are several folders providing
information/statistics*/monitoring/administration features on:

 Internal UCA for EBC components:

o Action Manager

o Collector

o Dispatcher

o Properties

o Server

o Value Pack Manager

 UCA for EBC value packs: there is one folder per running pack

The following sections will provide more detail on these folders.

Note

* The statistics available in the Java Console are also available at the UCA for EBC
User Interface. Some additional features are available in the Java Console, for
example to reset the statistics counters or to get information about internal UCA
for EBC components that are not yet available at the UCA for EBC User Interface.

5.1.3.1 Monitoring UCA for EBC internal components

Monitoring UCA for EBC Action Manager

The UCA for EBC Action Manager is an internal UCA for EBC component that provides
the capability to process asynchronous actions requested in the Drools rules files of
an UCA for EBC Value Pack scenario. Asynchronous actions are created when the
following code is present in a Drools rules file of a scenario:

Action action = new Action("TeMIP_AO_Directives_localhost");

action.addCommand("directiveName", "ACKNOWLEDGE");

61

 action.addCommand("entityName", a.getIdentifier());

action.addCommand("UserId", "UCA EBC");

action.executeAsync(AODirectiveKey.ENTITY_NAME);

These asynchronous actions are handled by the UCA for EBC Action Manager
internal component and are processed by the proper Channel Adapter or UMB
Adapter on the mediation layer (either OSS Open Mediation V7.2 or UMB V1.0).

In the Java Console, the Action Manager folder contains the following sub-folders:

 Action Queue: this queue contains the list of asynchronous actions that are
currently being processed

 Action Statistics: Information about the performance rate of the Action
Manager

 Action Threads: Information about the Action Manager thread pool

The following screenshot shows the UCA for EBC Action Manager component at the
Java JMX Console:

Figure 7 - Java JMX Console: UCA for EBC Action Manager

The following sections will provide more detail on the sub-components of the UCA
for EBC Action Manager available at the Java JMX console.

Notes

 For more information on asynchronous actions please refer to: [R2] HP UCA for

EBC Value Pack Development Guide

Action Queue

The Action Queue can be monitored at the Java JMX console using both attributes
and operations.

62

The following table lists the attributes of the Action Queue that are shown on the
Java JMX console:

Attribute name Settable Explanation

CurrentSize No The current size of the Action Queue (in
number of asynchronous actions in the
queue)

DateLastHighWaterMark No Date and time of the last high water mark
for the Action Queue

DateLastPublish No Date and time of the last time an
asynchronous action was added to the
queue

DateLastSubscribe No Date and time of the last time an
asynchronous action was removed from
the queue to be processed by a thread

DateLastZeroed No Date and time of the last time the Action
Queue was empty

HighWaterMark No Value of the last high water mark for the
Action Queue (in number of asynchronous
actions in the queue)

HighWaterMarkStillIncrea

sing

No Whether the high water mark for the Action
Queue is still increasing or not

MaxSize No Maximum size of the ActionQueue (in
number of asynchronous actions in the
queue)

NumberZeroedSinceLastHi

ghWaterMark

No The number of times the Action Queue size
was 0 since the last high water mark

SizeHistory No A history of the size of the ActionQueue (in
number of asynchronous actions in the
queue)

TotalObjects No Total number of asynchronous actions that
have been added to the Action Queue since
start-up

TotalObjectsSinceLastHig

hWaterMark

No Total number of asynchronous actions that
have been added to the Action Queue since
last high water mark

Table 17 - Java JMX Console: UCA for EBC Action Manager – Action Queue -
Attributes

The following table lists the operations that can be executed on the Action Queue
using the Java JMX console:

63

Operation name Explanation

resetQueueHistory() Resets all Action Queue counters (attributes)

Table 18 - Java JMX Console: UCA for EBC Action Manager – Action Queue -
Operations

Action Statistics

Action Statistics can be monitored at the Java JMX console using both attributes
and operations.

The following table lists the attributes of the Action Statistics that are shown on the
Java JMX console:

Attribute name Settable Explanation

ConsolidatedRate No The consolidated (average) performance rate
of the Action Manager (in number of
asynchronous actions processed per second)

HighestRate No The highest performance rate of the Action
Manager (in number of asynchronous actions
processed per second)

LastRate No The last performance rate of the Action
Manager (in number of asynchronous actions
processed per second)

LongestBurstRate No The performance rate of the longest burst of
the Action Manager (in number of
asynchronous actions processed per second)

Table 19 - Java JMX Console: UCA for EBC Action Manager – Action Statistics -
Attributes

The following table lists the operations that can be executed on the Action
Statistics using the Java JMX console:

64

Operation name Explanation

resetRates() Resets all Action Statistics rates (i.e. attributes)

Table 20 - Java JMX Console: UCA for EBC Action Manager – Action Statistics -
Operations

Action Threads

Action Threads can be monitored at the Java JMX console using both attributes and
operations.

The following table lists the attributes of the Action Threads that are shown on the
Java JMX console:

Attribute name Settable Explanation

FailedActions No The total number of failed asynchronous
actions of the Action Manager

NbActiveThread No The current number of active threads in the
thread pool of the Action Manager

NbPoolThread No The total number of threads in the thread
pool of the Action Manager

Table 21 - Java JMX Console: UCA for EBC Action Manager – Action Threads -
Attributes

The following table lists the operations that can be executed on the Action Threads
using the Java JMX console:

Operation name Explanation

resetCounters() Resets all Action Threads counters (i.e. attributes)

Table 22 - Java JMX Console: UCA for EBC Action Manager – Action Threads -
Operations

Monitoring UCA for EBC Collector

The UCA for EBC Collector is an internal UCA for EBC component that collects all
events (Alarms, etc…) coming into UCA for EBC either from the OSS Open Mediation
V7.2 mediation layer (events coming from UMB do not go through the Collector) or
from the uca-ebc-injector tool.

Monitoring the UCA for EBC Collector component is akin to measuring the input rate
of UCA for EBC.

All incoming events are first validated to weed out invalid/unrecognized types of
events. Validation errors will result in the events being rejected by the Collector.

The following screenshot shows the UCA for EBC Collector component at the Java
JMX Console:

65

Figure 8 - Java JMX Console: UCA for EBC Collector - Attributes

The UCA for EBC Collector can be monitored at the Java JMX console using both
attributes and operations.

The following table lists the attributes of the UCA for EBC Collector that are shown
on the Java JMX console:

Attribute name Settable Explanation

AverageEventNbPerMessa

ge

No Average number of events(1) per JMS
message received by the collector, i.e.
batching factor

CollectorRate No Collector rate is the average event rate
going through the Collector (in events per
second)

DateLastMessageValidatio

nError

No Date and time of the last event(1) in error
(due to validation error) received by the
Collector

DateLastReceivedEvent No Date and time of the last event(1) (Alarms,
etc…) received by the Collector

DateLastReceivedMessage No Date and time of the last JMS message(1)
received by the Collector

DateLastRejectedEvent No Date and time of the last event(1) rejected
by the Collector

66

Attribute name Settable Explanation

DateLastRejectedMessage No Date and time of the last JMS message(1)
rejected by the Collector

MessageValidationErrorsN

umber

No Number of events(1) in error (due to
validation error) received by the Collector

ReceivedEvents No Number of events(1) (Alarms, etc…) received
by the Collector

ReceivedMessages No Number of JMS messages(1) received by the
Collector

RejectedEvents No Number of events(1) (Alarms, etc…) rejected
by the Collector

RejectedMessages No Number of JMS messages(1) rejected by the
Collector

Table 23 - Java JMX Console: UCA for EBC Collector - Attributes

Note

(1) The UCA for EBC Collector receives JMS message which can contain any number of
events (Alarms, etc…), i.e. a batch of events. This explains why there are Collector
statistics for both JMS messages and events.

The following table lists the operations that can be executed on the UCA for EBC
Collector using the Java JMX console:

Operation name Explanation

resetCounters() Resets all Collector counters (i.e. attributes)

Table 24 - Java JMX Console: UCA for EBC Collector - Operations

Note

 For more information on the uca-ebc-injector tool please refer to the following

section: 2.2.2 “uca-ebc-injector”.

Monitoring UCA for EBC Dispatcher

The UCA for EBC Dispatcher is an internal UCA for EBC component that receives
events (Alarms, etc…) coming from the UCA for EBC Collector and forwards those
events to any eligible scenario (a property of the scenario states whether a scenario
is eligible to receiving incoming events or not) of any value pack currently running
on UCA for EBC.

The following screenshot shows the UCA for EBC Dispatcher component at the Java
JMX Console:

67

Figure 9 - Java JMX Console: UCA for EBC Dispatcher - Attributes

The UCA for EBC Dispatcher can be monitored at the Java JMX console using both
attributes and operations.

The following table lists the attributes of the UCA for EBC Dispatcher that are shown
on the Java JMX console:

Attribute name Settable Explanation

DispatcherRate No The event rate of the dispatcher (in number
of events per second)

LogEvents Yes A flag indicating whether the Dispatcher
should log the list of events that it
processes or not.

THIS ATTRIBUTE IS OBSOLETE. DO NOT USE
IT.

Queue_CurrentSize No The current size of the Dispatcher queue (in
number of events)

Queue_DateLastChangeEv

ent

No The date and time of the last “change
event” that was added to the Dispatcher
queue

Queue_DateLastDeletionE

vent

No The date and time of the last “deletion
event” that was added to the Dispatcher
queue

Queue_DateLastHighWate

rMark

No The date and time of the last high water
mark of the Dispatcher queue

Queue_DateLastPublish No Date and time of the last time an event was
added to the queue

68

Attribute name Settable Explanation

Queue_DateLastSubscrib No Date and time of the last time an event was
removed from the queue to be processed

Queue_DateLastZeroed No The date and time of the last time the
Dispatcher queue was empty

Queue_HighWaterMark No The value of the high water mark of the
Dispatcher queue (in number of events)

Queue_HighWaterMarkStil

lIncreasing

No Whether the high water mark of the
Dispatcher queue is still increasing or not

Queue_NumberZeroedSinc

eLastHighWaterMark

No The number of times that the Dispatcher
queue was empty since the last high water
mark

Queue_SizeHistory No The history of the Dispatcher queue size

Queue_TotalChangesEvent

s

No The total number of “change events” that
have been added to the Dispatcher Queue
since start-up

Queue_TotalDeletionEven

ts

No The total number of “deletion events” that
have been added to the Dispatcher Queue
since start-up

Queue_TotalObjects No The total number of “objects” that have
been added to the Dispatcher Queue since
start-up

Queue_TotalObjectsSinceL

astHighWaterMark

No The total number of “objects” that have
been added to the Dispatcher Queue since
the last high water mark

Table 25 - Java JMX Console: UCA for EBC Dispatcher - Attributes

The following table lists the operations that can be executed on the UCA for EBC
Dispatcher using the Java JMX console:

Operation name Explanation

resetCounters() Resets all Dispatcher counters (i.e. attributes), except the
LogEvents attribute.

Table 26 - Java JMX Console: UCA for EBC Dispatcher - Operations

Monitoring UCA for EBC Properties

The UCA for EBC Properties folder at the Java JMX Console shows the file system
location of each sub-folder of the UCA for EBC application.

The following screenshot shows the UCA for EBC Properties component at the Java
JMX Console:

69

Figure 10 - Java JMX Console: UCA for EBC Properties - Attributes

There are no operations that can be executed at the Java JMX Console on the UCA
for EBC Properties.

The following table lists the attributes of the UCA for EBC Properties that are shown
on the Java JMX console:

Attribute name Settable Explanation

AlarmsDirectory No Default Value: ${UCA_EBC_HOME}/alarms

ApidocDirectory No Default Value: ${UCA_EBC_HOME}/apidoc

ArchiveDirectory No Default Value:
${UCA_EBC_INSTANCE}/archive

BinDirectory No Default Value: ${UCA_EBC_HOME}/bin

ConfigurationDefaultDirec

tory

No Default Value:
${UCA_EBC_HOME}/defaults/conf

ConfigurationDirectory No Default Value:
${UCA_EBC_INSTANCE}/conf

DataDirectory Yes Default Value: ${UCA_EBC_INSTANCE}

DefaultsDirectory No Default Value:
${UCA_EBC_HOME}/defaults

DeployDirectory No Default Value:
${UCA_EBC_INSTANCE}/deploy

70

Attribute name Settable Explanation

ExternalLibDirectory No Default Value:
${UCA_EBC_INSTANCE}/externallib

GettingStartedDirectory No Default Value:
${UCA_EBC_HOME}/gettingStarted

LibDirectory No Default Value: ${UCA_EBC_HOME}/lib

LicensesDirectory No Default Value: ${UCA_EBC_HOME}/licenses

Log4jConfigurationFileUrl No Default Value:
file:${UCA_EBC_VAR}/conf/uca-ebc-
log4j.xml

LogDefaultDirectory No Default Value:
${UCA_EBC_HOME}/defaults/logs

LogDirectory No Default Value: ${UCA_EBC_INSTANCE}/logs

RootDirectory Yes Default Value: ${UCA_EBC_HOME}

SchemasDirectory No Default Value:
${UCA_EBC_HOME}/schemas

ValuePacksDefaultDirector

y

No Default Value:
${UCA_EBC_HOME}/defaults/valuepacks

ValuePacksDirectory No Default Value:
${UCA_EBC_INSTANCE}/valuepacks

WebappDirectory No Default Value: ${UCA_EBC_HOME}/webapp

Table 27 - Java JMX Console: UCA for EBC Properties - Attributes

Monitoring UCA for EBC Server

The following screenshot shows the UCA for EBC Server component at the Java JMX
Console:

71

Figure 11 - Java JMX Console: UCA for EBC Server - Operations

The UCA for EBC Server can be monitored at the Java JMX console using operations.

The following table lists the operations that can be executed on the UCA for EBC
Server using the Java JMX console:

Operation name Explanation

reloadLog4jConfigurationFile() Reloads the log4J configuration file.

reloadLog4jConfigurationFile(Strin

g)

Reloads the log4J configuration file, using the
log4J configuration file located at the path passed
as parameter

serverStop(boolean) Stops UCA for EBC Server. The parameter is a
boolean flag that indicates whether to restart
(true) UCA for EBC Server once it has stopped or
not (false).

serverStop() Stops UCA for EBC Server.

serverShow() Displays the status of UCA for EBC Server, whether
it’s running or not.

Table 28 - Java JMX Console: UCA for EBC Server - Operations

Monitoring UCA for EBC Value Pack Manager

The UCA for EBC Value Pack Manager is an internal UCA for EBC component. It
manages all the Value Packs of the UCA for EBC application.

The following screenshot shows the UCA for EBC Value Pack Manager component at
the Java JMX Console:

72

Figure 12 - Java JMX Console: UCA for EBC Value Pack Manager - Operations

The UCA for EBC Value Pack Manager can be monitored at the Java JMX console
using both attributes and operations.

The following table lists the attributes of the UCA for EBC Value Pack Manager that
are shown on the Java JMX console:

Attribute name Settable Explanation

ActiveValuePacks No The list of active value pack currently
running on UCA for EBC

AllValuePacks No The list of all value pack currently
running/degraded/stopped/not deployed
on UCA for EBC

DeploymentHistory No The complete history of deployments of
value packs on UCA for EBC

Table 29 - Java JMX Console: UCA for EBC Value Pack Manager - Attributes

The following table lists the operations that can be executed on the UCA for EBC
Value Pack Manager using the Java JMX console:

73

Operation name Explanation

display() Lists all Value Packs and scenarios currently
running on UCA for EBC

startValuePack(String) Starts a Value Pack identified by the path of the
Value Pack in the ${UCA_EBC_INSTANCE}/deploy
folder passed as parameter.

For example: “deploy/<Value Pack Name>-<Value
Pack Version>”

Parameter 1: path of the Value Pack

startValuePack(String, String) Starts a Value Pack identified by its name and
version passed as parameters.

Parameter 1: Value Pack Name

Parameter 2: Value Pack Version

undeployValuePack(String,

String)

Undeploys a Value Pack identified by its name and
version passed as parameters

Parameter 1: Value Pack Name

Parameter 2: Value Pack Version

stopValuePack(String, String) Stops a Value Pack identified by its name and
version passed as parameters

Parameter 1: Value Pack Name

Parameter 2: Value Pack Version

dumpScenarioSession(String,

String, String)

Dumps the Drools Working Memory of a scenario of
a value pack identified by the value pack name,
version, and the scenario name

Parameter 1: Value Pack Name

Parameter 2: Value Pack Version

Parameter 3: Scenario Name

If parameter 3 is omitted, then the Drools Working
Memory of all the scenarios of the Value Pack
specified in parameters 1, and 2 is dumped.

If parameter 1, 2, and 3 are omitted, then the Drools
Working Memory of all the scenarios of all the value
packs is dumped.

74

Operation name Explanation

reloadScenarioSession(String,

String, String, String)

Reloads a specific rule file of a scenario of a value
pack identified by the value pack name, version, the
scenario name, and the rule file name

Parameter 1: Value Pack Name

Parameter 2: Value Pack Version

Parameter 3: Scenario Name

Parameter 4: Rule File Name

If Parameter 4 is omitted, then all rules files of the
scenario of the Value Pack specified in parameters
1, 2, and 3 are reloaded.

If parameter 3 and 4 are omitted, then all rules files
of all the scenarios of the Value Pack specified in
parameters 1, and 2 are reloaded.

If parameter 1, 2, 3 and 4 are omitted, then all rules
files of all the scenarios of all the value packs are
reloaded.

retractScenarioSession(String,

String, String)

Clears the Drools Working Memory of a scenario of a
value pack identified by the value pack name,
version, and the scenario name

Parameter 1: Value Pack Name

Parameter 2: Value Pack Version

Parameter 3: Scenario Name

If parameter 3 is omitted, then the Drools Working
Memory of all the scenarios of the Value Pack
specified in parameters 1, and 2 is cleared.

If parameter 1, 2, and 3 are omitted, then the Drools
Working Memory of all the scenarios of all the value
packs is cleared.

75

Operation name Explanation

setEngineLogging(String, String,

String, Boolean)

Enables/Disables scenario specific Drools engine
logging for a Value Pack scenario specified by the
Value Pack name, version, and scenario name. The
4th parameter is a boolean value: true for enabling,
false for disabling scenario specific Drools engine
logging.

Parameter 1: Value Pack Name

Parameter 2: Value Pack Version

Parameter 3: Scenario Name

Parameter 4: A Flag indicating whether to
enable/disable engine logging (true/false)

If parameter 3 is omitted, then the engine logging of
all the scenarios of the Value Pack specified in
parameters 1, and 2 is enabled or disabled
depending on the value of parameter 4.

If parameter 1, 2, and 3 are omitted, then the
engine logging of all the scenarios of all the value
packs is enabled or disabled depending on the value
of parameter 4.

reloadConfigurationFile(String,

String, String, String)

Reloads a configuration file for a Value Pack
scenario specified by the Value Pack name, version,
and scenario name. The 4th parameter is the name
of the configuration file to reload.

Parameter 1: Value Pack Name

Parameter 2: Value Pack Version

Parameter 3: Scenario Name

Parameter 4: Configuration file name

If parameter 4 is omitted, all configuration files of
the scenario are reloaded.

If parameters 3 and 4 are omitted, all configuration
files of all scenarios of the value pack are reloaded.

If parameters 1, 2, 3 and 4 are omitted, all
configuration files of all scenarios of all value packs
are reloaded.

Table 30 - Java JMX Console: UCA for EBC Value Pack Manager - Operations

5.1.3.2 Monitoring UCA for EBC value packs

Each UCA for EBC Value Pack running has its own sub-folder at the Java JMX
Console, under the “uca_ebc” top folder. Each Value Pack sub-folder is named after
the Value Pack name and version.

In the Java Console, each Value Pack folder contains the following sub-folders:

 Class Loader: this sub-folder is displayed only if the
uca.ebc.classloader property in the
${UCA_EBC_INSTANCE}/conf/uca-ebc.properties file has

been set to ucaclassloader (this is not the case by default) and

76

contains information about the UCA for EBC class loader specific to the
Value Pack

 DB flows: this sub-folder contains information about the DB flows specific to
the Value Pack

 Mediation flows: this sub-folder contains information about the mediation
flows specific to the Value Pack

 Scenarios: this sub-folder contains information on each of the scenarios of
the value pack (the contents of this sub-folder is explained in the next
section: 5.1.3.3 “Monitoring UCA for EBC scenarios”)

 Value Pack: this sub-folder contains information on the value pack itself

The following screenshot shows a sample UCA for EBC Value Pack sub-folder at the
Java JMX Console:

Figure 13 - Java JMX Console: a UCA for EBC Value Pack

The following sections will provide more detail on the Class Loader, DB Flows,
Mediation flows, Scenarios and Value Pack sub-folders of any UCA for EBC Value
Pack at the Java JMX console.

Class Loader

This sub-folder is displayed only if the uca.ebc.classloader property in the
${UCA_EBC_INSTANCE}/conf/uca-ebc.properties file has been set to

ucaclassloader (this is not the case by default).

The UCA for EBC Value Pack Class Loader represents the UCA EBC class loader for a
specific UCA for EBC Value Pack.

The following screenshot shows the attributes available for a UCA for EBC Value
Pack Class Loader component at the Java JMX Console:

77

Figure 14 - Java JMX Console: UCA for EBC Value Pack - Class Loader - Attributes

Any UCA for EBC Value Pack Class Loader can be monitored at the Java JMX console
using both attributes and operations.

The following table lists the attributes of the UCA for EBC Value Pack Class Loader
that are shown on the Java JMX console:

Attribute name Settable Explanation

ListClasses No The list of Java Classes loaded by the Value
Pack Class Loader

ListErrorClasses No The list of Java Classes that could not be
loaded by the Value Pack Class Loader

ListErrorResources No The list of Java Resources that could not be
loaded by the Value Pack Class Loader

ListFullPackages No The full list of Java Packages loaded by the
Value Pack Class Loader

ListJarFiles No The list of JAR files loaded by the Value
Pack Class Loader

ListValuePackPackages No The list of Value Pack Java Packages loaded
by the Value Pack Class Loader

TotalErrorClasses No The total number of Java Classes that could
not be loaded by the Value Pack Class
Loader

78

Attribute name Settable Explanation

TotalLoadedClasses No The total number of Java Classes loaded by
the Value Pack Class Loader

TotalLoadedPackages No The total number of Java Packages loaded
by the Value Pack Class Loader

Table 31 - Java JMX Console: UCA for EBC Value Pack - Class Loader - Attributes

The following screenshot shows the operations available for a UCA for EBC Value
Pack Class Loader component at the Java JMX Console:

79

Figure 15 - Java JMX Console: UCA for EBC Value Pack - Class Loader - Operations

The following table lists the operations that can be executed on the UCA for EBC
Value Pack Class Loader using the Java JMX console:

80

Operation name Explanation

dumpResources() Dumps the list of all the Resources loaded by the
Value Pack Class Loader

dumpClasses() Dumps the list of all the Java Classes loaded by the
Value Pack Class Loader

dumpFullClass(String) Dumps a Java Class loaded by the Value Pack Class
Loader. The Java Class is identified by the name of
the class passed as a parameter.

Parameter 1: Full Class Name

getClassInfo(String) Returns information on a Java Class loaded by the
Value Pack Class Loader. The Java Class is
identified by the name of the class passed as a
parameter.

Parameter 1: Full Class Name

getClassInfoAllHierarchy(String) Returns information on a Java Class loaded by the
Value Pack Class Loader or by the Main Class
Loader. The Java Class is identified by the name of
the class passed as a parameter.

Parameter 1: Full Class Name

getResourceInfo(String) Returns information on a Resource loaded by the
Value Pack Class Loader. The Resource is identified
by the name passed as a parameter.

Parameter 1: Resource Name

getResourceInfoAllHierarchy(Stri

ng)

Returns information on a Resource loaded by the
Value Pack Class Loader or Main Class Loader. The
Resource is identified by the name passed as a
parameter.

Parameter 1: Resource Name

Table 32 - Java JMX Console: UCA for EBC Value Pack - Class Loader - Operations

DB Flows

The UCA for EBC Value Pack DB Flows represent the DB flows for a specific UCA for
EBC Value Pack.

The following screenshot shows the attributes available for a UCA for EBC Value
Pack Mediation Flows component at the Java JMX Console:

81

Figure 16 - Java JMX Console: UCA for EBC Value Pack – DB Flows - Attributes

Any UCA for EBC Value Pack DB Flow can be monitored at the Java JMX console
using both attributes and operations.

The following table lists the attributes of the UCA for EBC Value Pack DB Flows that
are shown on the Java JMX console:

Attribute name Settable Explanation

FlowStatus No The status of the DB Flow

FlowStatusHistory No A history of the status of the Mediation DB
over time

FlowType No Either dynamic or static

Name No The name of the DB Flow

SourceIdentifier No The source identifier of the DB Flow

SynchronizationStatus No Either synchronized or synchronizing

82

Attribute name Settable Explanation

SynchronizationStatusHist

ory

No A history of the synchronization status of
the DB Flow over time

Table 33 - Java JMX Console: UCA for EBC Value Pack – DB Flows - Attributes

The following screenshot shows the operations available for a UCA for EBC Value
Pack Class Loader component at the Java JMX Console:

Figure 17 - Java JMX Console: UCA for EBC Value Pack – DB Flows - Operations

The following table lists the operations that can be executed on the UCA for EBC
Value Pack DB Flows using the Java JMX console:

Operation name Explanation

start() Start the DB Flow

stop() Stop the DB Flow

status() Displays the status of the DB Flow

resynchronize() Resynchronizes the DB Flow

Table 34 - Java JMX Console: UCA for EBC Value Pack – DB Flows - Operations

Mediation Flows

The UCA for EBC Value Pack Mediation Flows represent the mediation flows for a
specific UCA for EBC Value Pack.

83

The following screenshot shows the attributes available for a UCA for EBC Value
Pack Mediation Flow component at the Java JMX Console:

Figure 18 - Java JMX Console: UCA for EBC Value Pack – Mediation Flows -
Attributes

Any UCA for EBC Value Pack Mediation Flow can be monitored at the Java JMX
console using both attributes and operations.

The following table lists the attributes of the UCA for EBC Value Pack Mediation
Flows that are shown on the Java JMX console:

Attribute name Settable Explanation

ActionReference No The Action Reference (from the
ActionRegistry.xml configuration file)
associated with the Mediation Flow

FailedActions No The number of Failed actions associated
with the Mediation Flow (Each action is
either a CreateFlow, DeleteFlow,
ResynchronizeFlow, or a StatusFlow action)

FlowStatus No The status of the Mediation Flow

FlowStatusHistory No A history of the status of the Mediation Flow
over time

FlowType No Either dynamic or static

Name No The name of the Mediation Flow

84

Attribute name Settable Explanation

SynchronizationStatus No Either synchronized or synchronizing

SynchronizationStatusHist

ory

No A history of the synchronization status of
the Mediation Flow over time

Table 35 - Java JMX Console: UCA for EBC Value Pack – Mediation Flows -
Attributes

The following screenshot shows the operations available for a UCA for EBC Value
Pack Mediation Flow component at the Java JMX Console:

Figure 19 - Java JMX Console: UCA for EBC Value Pack – Mediation Flows -
Operations

85

The following table lists the operations that can be executed on the UCA for EBC
Value Pack Mediation Flows using the Java JMX console:

Operation name Explanation

start() Start the Mediation Flow

stop() Stop the Mediation Flow

status() Displays the status of the Mediation Flow

resynchronize() Resynchronizes the Mediation Flow

displayMediationFlowXML() Displays the XML definition of the Mediation Flow
(extracted from the ValuePackConfiguration.xml
file)

displayLastActionStatus() Displays the output of the last action performed on
the Mediation Flow (either a CreateFlow,
DeleteFlow, ResynchronizeFlow, or a StatusFlow
action)

displayLastCreateFlowActionSta

tus()

Displays the output of the last CreateFlow action
performed on the Mediation Flow

displayLastDeleteFlowActionSta

tus()

Displays the output of the last DeleteFlow action
performed on the Mediation Flow

displayLastStatusFlowActionSta

tus()

Displays the output of the last StatusFlow action
performed on the Mediation Flow

displayLastResynchFlowActionSt

atus()

Displays the output of the last ResynchronizeFlow
action performed on the Mediation Flow

Table 36 - Java JMX Console: UCA for EBC Value Pack – Mediation Flows -
Operations

Scenarios

All the scenarios of a value pack are listed under the Scenarios sub-folder of the
value pack folder, like in the screenshot below:

86

Figure 20 - Java JMX Console: UCA for EBC Value Pack - Scenarios

Each scenario sub-folder is named after the scenario. Please see chapter 5.1.3.3
“Monitoring UCA for EBC scenarios” for detailed information on the contents of each
scenario sub-folder.

Value Pack

The Value Pack sub-folder of a UCA for EBC Value Pack presents the attributes and
operations for a specific UCA for EBC Value Pack.

The following screenshot shows the attributes available for a Value Pack sub-folder
of a UCA for EBC Value Pack at the Java JMX Console:

87

Figure 21 - Java JMX Console: UCA for EBC Value Pack – Value Pack - Attributes

Any UCA for EBC Value Pack can be monitored at the Java JMX console using both
attributes and operations.

The following table lists the attributes of the UCA for EBC Value Pack that are
shown on the Java JMX console:

Attribute name Settable Explanation

DateLastReceivedEvent No The date and time of the last event received
by the Value Pack

FlowPercentage No Percentage of events received by the Value
Pack compared to the total of events
received by the UCA for EBC Dispatcher

FlowStatus No The status of the Mediation Flow for the
Value Pack, either:

 Unknown

 Disabled

 Inactive

 Failover

 Failed

 Active

 Starting

 Stopping

88

ReceivedEventsSinceStart

up

No The number of events received by the Value
Pack since start-up

ScenarioStatus No The status of the Scenarios for the Value
Pack, either:

 Starting

 Running

 Degraded

 Failed

 Stopped

 Unknown

ScenariosName No The list of scenario names associated with
the Value Pack

Status No The status of the Value Pack, either:

 Starting

 Running

 Degraded

 Failed

 Stopping

 Stopped

 NotDeployed

 Unknown

StatusExplanation No A detailed explanation of the status of the
Value Pack

StatusHistory No The full history of the Value Pack statuses,
since it was first started

SynchronizationStatus No The synchronization status of the Value
Pack, either:

 Synchronizing

 Synchronized

Table 37 - Java JMX Console: UCA for EBC Value Pack – Value Pack - Attributes

The following screenshot shows the operations available for a Value Pack sub-
folder of a UCA for EBC Value Pack at the Java JMX Console:

89

Figure 22 - Java JMX Console: UCA for EBC Value Pack – Value Pack - Operations

The following table lists the operations that can be executed on the UCA for EBC
Value Pack using the Java JMX console:

Operation name Explanation

resetStatistics() Resets the statistics for the Value Pack

retractAllScenarios() Clears the Drools Working Memory of all the
scenarios of the Value Pack

dumpSessionOfAllScenarios() Dumps the Drools Working Memory of all the
scenarios of the Value Pack

reloadAllScenarios() Reloads all rules files of all the scenarios of the
Value Pack

createAllMediationFlows() Creates all the mediation flows associated with
the Value Pack

deleteAllMediationFlows() Deletes all the mediation flows associated with
the Value Pack

resynchAllMediationFlows() Resynchronizes all the mediation flows
associated with the Value Pack

statusAllMediationFlows() Retrieves the status of all the mediation flows
associated with the Value Pack

90

Table 38 - Java JMX Console: UCA for EBC Value Pack – Value Pack - Operations

5.1.3.3 Monitoring UCA for EBC scenarios

Each scenario of a running UCA for EBC Value Pack has its own sub-folder at the
Java JMX Console, under the “uca_ebc/<value pack name>-<value pack
version>/Scenarios” folder. Each Scenario sub-folder is named after the Scenario.

The following screenshot shows the attributes available for a Scenario sub-folder
of a UCA for EBC Value Pack at the Java JMX Console:

Figure 23 - Java JMX Console: UCA for EBC Value Pack – Scenario - Attributes

Any Scenario of a UCA for EBC Value Pack can be monitored at the Java JMX console
using both attributes and operations.

The following table lists the attributes of any Scenario of a UCA for EBC Value Pack
that are shown on the Java JMX console:

Attribute name Settable Explanation

Actions_Failed No The number of failed actions for the scenario

Compression_AVC_Compre

ssed

No The number of AVC (Attribute Value Change)
events compressed by the Compression
thread

Compression_AVC_Efficien

cyPercentage

No The efficiency percentage of the
Compression Thread regarding AVC
(Attribute Value Change) events

Compression_AVC_Receive

d

No The number of AVC (Attribute Value Change)
events received

91

Attribute name Settable Explanation

Compression_SC_Compres

sed

No The number of SC (State Change) events
compressed by the Compression thread

Compression_SC_Efficienc

yPercentage

No The efficiency percentage of the
Compression Thread regarding SC (State
Change) events

Compression_SC_Received No The number of SC (State Change) events
received

Filter_DateLastRejectedEv

ent

No The Date and Time of the last event that was
rejected by the scenario filter

Filter_NumberOfPassedEv

entsSinceStartup

No The number of events that passed the
scenario filters since start-up

Filter_NumberOfRejectedE

ventsSinceStartup

No The number of events rejected by the
scenario filters since start-up

FlowPercentage No Percentage of events inserted into Working
Memory compared to the total of events
received by the Scenario

LogRules Yes Flag (true/false) indicating whether scenario
specific Drools engine logging is
enabled/disable for the scenario

Queue_CurrentSize No The current size (in number of events) of the
scenario events queue

Queue_DateLastHighWate

rMark

No The date and time of the last high water
mark of the Scenario events queue

Queue_DateLastPublish No Date and time of the last time an event was
added to the Scenario events queue

Queue_DateLastSubscribe No Date and time of the last time an event was
removed from the Scenario events queue to
be processed

Queue_DateLastZeroed No The date and time of the last time the
Scenario events queue was empty

Queue_HighWaterMark No The value of the high water mark of the
Scenario events queue (in number of events)

Queue_HighWaterMarkStil

lIncreasing

No Whether the high water mark of the Scenario
events queue is still increasing or not

Queue_NumberZeroedSinc

eLastHighWaterMark

No The number of times that the Scenario
events queue was empty since the last high
water mark

92

Attribute name Settable Explanation

Queue_SizeHistory No The history of the Scenario events queue size

Queue_TotalObjects No The total number of “objects” that have been
added to the Scenario events queue since
start-up

Queue_TotalObjectsSinceL

astHighWaterMark

No The total number of “objects” that have
been added to the Scenario events queue
since the last high water mark

Status No The status of the Scenario, either:

 Starting

 Running

 Degraded

 Failed

 Stopped

 Unknown

StatusExplanation No An explanation for the status of the Scenario

StatusHistory No The full history of the Scenario statuses,
since it was first started

WM_CurrentNumberOfFact No The current number of facts in the Drools
Working Memory of the Scenario

WM_DateLastInjectedFact No Date and time of the last fact inserted into
the Drools Working Memory of the Scenario

WM_DateLastRemovedFac

t

No Date and time of the last fact removed from
the Drools Working Memory of the Scenario

WM_DateLastUpdatedFact No Date and time of the last fact updated in the
Drools Working Memory of the Scenario

WM_InsertUpdateRetractR

ate

No The rate of operations (insert/update/retract
fact) on the Drools Working Memory of the
Scenario in operations per second

WM_MaxNumberOfFactsSi

nceStartup

No The maximum number of facts in the Drools
Working Memory of the Scenario since start-
up

93

Attribute name Settable Explanation

WM_MediationSynchroniz

ationFlag

No The value of the Mediation Synchronization
Flag:

 True (i.e. the mediation flow is
synchronized)

 False (i.e. the mediation flow is
currently undergoing a
synchronization)

WM_MediationSynchroniz

ationHistory

No The history of the synchronization status of
the mediation flow

WM_NumberOfFactsSinceS

tartup

No The number of facts that have been inserted
into the Drools Working Memory of the
Scenario since start-up

WM_NumberOfRemovedFa

ctsSinceStartup

No The number of facts that have been removed
from the Drools Working Memory of the
Scenario since start-up

WM_NumberOfUpdatedFac

tsSinceStartup

No The number of facts that have been updated
in the Drools Working Memory of the
Scenario since start-up

Table 39 - Java JMX Console: UCA for EBC Value Pack – Scenario - Attributes

The following screenshot shows the operations available for a Scenario sub-folder
of a UCA for EBC Value Pack at the Java JMX Console:

Figure 24 - Java JMX Console: UCA for EBC Value Pack – Scenario - Operations

94

The following table lists the operations that can be executed on any Scenario of a
UCA for EBC Value Pack using the Java JMX console:

Operation name Explanation

resetCounters() Resets the statistics for the Scenario

reloadRulesFile(String) Reload a specific Rules File of the Scenario

Parameter 1: The name of the Rules File

retractAll() Clears the Drools Working Memory of the
Scenario

resetStatus() Resets the status of the Scenario

dumpFailedActions() Dump all failed actions for the Scenario

retractFailedActions() Retracts all failed actions from the Drools
Working Memory of the Scenario

reloadScenario() Reloads all rules files of the Scenario

dumpSession() Dumps the Drools Working Memory of the
Scenario

clearCompressionStats() Resets the statistics regarding Compression

Table 40 - Java JMX Console: UCA for EBC Value Pack – Scenario - Operations

95

Chapter 6

UCA for EBC Advanced Troubleshooting

6.1 UCA for EBC Logging Mechanism
The UCA for EBC logging feature is based on the log4j technology.

The main application logging mechanism is driven by the setting of the
${UCA_EBC_INSTANCE}/conf/uca-ebc-log4j.xml log4j configuration

file.

Some other (specific) logging levels can be activated by setting some properties in
the ${UCA_EBC_INSTANCE}/conf/uca-ebc.properties file. These

additional logging levels are:

 Scenario rule execution log:

That allows logging scenarios rules execution in a dedicated file in order to
help debugging.

 Collector log:

That allows logging all alarms collected in a specific file.

The generated log files are located in the ${UCA_EBC_INSTANCE}/logs

directory.

Note

Changes to the ${UCA_EBC_INSTANCE}/conf/uca-ebc.properties file

require a restart of UCA for EBC Server in order for the changes to be taken into
account.

Changes to the ${UCA_EBC_INSTANCE}/conf/uca-ebc-log4j.xml file

require either a reload of the Log4J configuration (through the uca-ebc-admin
command-line tool, or the UCA for EBC User Interface) or a restart of UCA for EBC
Server in order for the changes to be taken into account.

6.1.1 Standard application logging

Application logging is controlled by the ${UCA_EBC_INSTANCE}/conf/uca-
ebc-log4j.xml log4j configuration file.

The CONSOLE, FILE, and DB appenders are used for controlling application logging
to the console, standard application log file or UCA for EBC User Interface. The
standard application log file is the following (by default):
${UCA_EBC_INSTANCE}/logs/uca-ebc.log.

The ${UCA_EBC_INSTANCE}/conf/uca-ebc-log4j.xml can be modified

to control:

 what kind of events get logged

 what is the trace level for each event type (event type are defined by Java
package names)

 where the events are logged (what appenders are used)

96

The provided ${UCA_EBC_INSTANCE}/conf/uca-ebc-log4j.xml file

predefines a set of application classes for which the logging can be activated or not.

6.1.2 Collector logging

With UCA for EBC 3.3, events and alarms can still be collected through the OSS Open
Mediation UCA for EBC Channel adapter, as in previous releases; and they can also
be collected through the UCA for EBC UMB Adapter.

In both cases, UCA for EBC offers the possibility to log the collected alarms or
events into a file exactly how they were received.

6.1.2.1 Events received through the OSS Open Mediation UCA for EBC
Channel Adapter

The Collector raw logging feature is the possibility to log in a file the exact alarm
list that is received by the collector through the UCA for EBC Channel Adapter

This logging feature can be enabled/disabled at application start-up by setting the
collector.logger.enabled property to true or false in the
${UCA_EBC_INSTANCE}/conf/uca-ebc.properties file.

By setting this property to true all alarms going through the Collector will be

dumped in either one of the following files before any other treatment if done on
the received alarms:

 the ${UCA_EBC_INSTANCE}/logs/uca-ebc-collector.log file

for alarms that are not rejected by the Collector

 the ${UCA_EBC_INSTANCE}/logs/uca-ebc-collector-

rejected.log file for alarms that are rejected by the Collector

Alarms can be rejected by the Collector for either one of the following reasons:

 The JMS message containing the alarms does not have the proper body
format: the expected JMS message body format expected by the Collector
is Text

 The content of the JMS message cannot be converted to Alarm objects
because the XML format of the alarms inside the JMS message is not
compliant with the UCA for EBC Alarm format defined in the
${UCA_EBC_HOME}/schemas/uca-expert-alarm.xsd file

 Collector message validation is turned on (the
collector.messages.validation property is set to true in the

${UCA_EBC_INSTANCE}/conf/uca-ebc.properties file), and

the alarms in the JMS message received by the Collector failed validation

Alarms are dumped directly in XML format in the uca-ebc-collector.log

file. On the other hand, the uca-ebc-collector-rejected.log file has the

format of a log file.

6.1.2.2 Events received through the UMB UCA Mediation Adapter

Events (including alarms), received by UCA for EBC through the UCA for EBC UMB
Adapter will be logged in the following format:

97

This logging feature can be enabled/disabled at application start-up by setting the
received.events.logger.enabled property to true or false in the

${UCA_EBC_INSTANCE}/conf/uca-ebc.properties file.

By setting this property to true all events going through the UCA for EBC UMB

Adapter will be dumped in the following file before any other treatment is done on
the received alarms:

${UCA_EBC_INSTANCE}/logs/uca-ebc-received-events.log

6.1.3 Scenario logging

6.1.3.1 Scenario logging

In order to be able to configure how log messages coming from the Scenario rule
files (drl files) are processed (what trace level and appenders are used), a specific
logger must be added to the ${UCA_EBC_INSTANCE}/conf/uca-ebc-

log4j.xml configuration file.

This logger is defined as follows:

 <logger name="<scenario name>" additivity="false">

 <level value="INFO" />

 <appender-ref ref="CONSOLE" />

 <appender-ref ref="DB" />

 </logger>

Where <scenario name> is the name of the scenario for which you want to configure
the logging. The <scenario name> has to be identical to the <scenario name>
defined in the ValuePackConfiguration.xml file of your Value Pack.

The definition of your scenario specific logger can be added to the “Detailed Traces
for Value Pack Scenarios” section of the ${UCA_EBC_INSTANCE}/conf/uca-

ebc-log4j.xml file. This section is identified by comments in the file.

The following screenshot shows an example of how to configure specific logging in
the uca-ebc-log4j.xml file:

98

Figure 25 - Configuring scenario specific logging in the uca-ebc-log4j.xml file

6.1.3.2 Scenario exceptions logging

It is possible to define a specific logger (one for each scenario) in the
${UCA_EBC_INSTANCE}/conf/uca-ebc-log4j.xml configuration file for

logging the exceptions thrown in the action part of the rules of a scenario.

By default, these exceptions are logged using the scenario logger as defined in the
previous chapter: 6.1.3.1 “Scenario logging”.

If you want exceptions log messages to be handled by a specific logger different
from the scenario logger, you can define it in the uca-ebc-log4j.xml

configuration file. The logger should be named “myScenario.exceptions”
(change myScenario to the actual name of your scenario as per the

ValuePackConfiguration.xml file).

The following screenshot shows an example of how to configure a specific scenario
exception logger in the uca-ebc-log4j.xml file:

99

Figure 26 - Configuring scenario exceptions specific logging in the uca-ebc-
log4j.xml file

In versions of UCA for EBC prior to UCA for EBC V3.3, these scenario exceptions were
logged using either
"com.hp.uca.expert.scenario.internal.ScenarioImpl" or

"com.hp.uca.expert.watchdog.WatchdogThread" loggers depending on

whether the Scenario Thread or Watchdog Thread was executing the rules when the
exception occurred.

With to UCA for EBC V3.3 onward, these scenario exceptions are now logged to
“myScenario.exceptions”.

There’s some commented XML code in the uca-ebc-log4j.xml file delivered

with UCA for EBC V3.3 that can be used to easily create a
“myScenario.exceptions” logger.

Note

 Please refer to section 3.2.3 “uca-ebc-log4j.xml file configuration” to learn

more about the configuration of the ${UCA_EBC_INSTANCE}/conf/uca-

ebc-log4j.xml file

6.1.3.3 Scenario rule execution logging

Rule execution can be logged per scenario in a dedicated log file. Logging can be
enabled/disabled at application start-up by setting the engine.logger.enabled
property to true/false in the ${UCA_EBC_INSTANCE}/conf/uca-
ebc.properties file.

This property controls scenario specific rule execution logging for all scenarios.

Properties like engine.logger.interval (which controls the interval in milliseconds at
which rule execution information is written to the log file) can also be set. These
properties affect all scenario specific rule execution log files.

Note

 Please refer to section 3.2.1 "uca-ebc.properties file configuration”, especially

Table 16 “ - Rule Engine logger properties in the uca-ebc.properties file”, for more
information on how to configure the ${UCA_EBC_INSTANCE}/conf/uca-

ebc.properties file.

Changes to the ${UCA_EBC_INSTANCE}/conf/uca-ebc.properties file

require a restart of UCA for EBC Server in order for the changes to be taken into
account.

Scenario-specific rule execution log files are named logEngine_<scenario
name>.log and are located in the ${UCA_EBC_INSTANCE}/logs directory.

Scenario-specific engine log files contain standard Drools engine log entries
specific to a scenario.

100

At runtime, it is also possible to enable/disable scenario specific rule execution
logging for just one scenario by using either the uca-ebc-admin command-line tool
or the Java console.

Below is a screenshot showing how to enable/disable scenario specific rule
execution logging for just one scenario by using the Java console:

Figure 27 - Java JMX Console: Enabling/Disabling scenario specific rule
execution logging for one scenario

Scenario specific rule execution log files are compatible with the JBoss Rule Audit
feature in Eclipse IDE.

The JBoss Rule Audit panel comes with the JBoss Drools Eclipse plugin. You can
view this panel by selecting the JBoss Drools perspective in Eclipse IDE as shown
below. The JBoss Rule Audit panel should be part of the JBoss Drools perspective
unless it has been removed.

101

Figure 28 - Selecting the JBoss Drools perspective in Eclipse IDE by clicking on
the JBoss Drools perspective icon

Alternatively, you can switch to the JBoss Drools perspective by going to the
“Window” -> “Open Perspective” Eclipse IDE top menu, and selecting the “Drools”
perspective, as shown below.

Figure 29 - Selecting the JBoss Drools perspective in Eclipse IDE by using the
Eclipse IDE menus

If the Drools Audit panel is not shown, you can select it by going to the “Window” ->
“Show View” Eclipse IDE top menu, and selecting the “Audit” view from the Drools
group.

102

Figure 30 - Showing the JBoss Drools Audit view in Eclipse IDE

To display the contents of a scenario specific rule execution log file using Eclipse
IDE, you need to load the file inside the Audit panel.

You can open a logEngine_<scenario name>.log file in the Audit panel by using drap
and drop of the file into the Audit panel as shown in the screenshot below.

Figure 31 - Eclipse IDE: Using drag and drop to open a Drools engine log file in
the Drools Audit panel

Alternatively you can open a Drools engine log file in the Drools Audit panel by
clicking on the “Open log” icon of the Drools Audit panel as show below:

Figure 32 - Eclipse IDE: Using the “Open log” icon to open a Drools engine log file
in the Drools Audit panel

The following screenshot shows an example of how contents of a scenario specific
rule execution log file is displayed in the Audit panel of the Drools perspective in
Eclipse IDE:

103

Figure 33 - Eclipse IDE: Viewing scenario rule execution logs

Scenario specific rule execution log files contain Drools rule activation information
in addition to the insertion/update/deletion of objects in Drools working memory.

Besides the Audit panel, the Drools perspective in Eclipse IDE also provides the
Agenda and Working Memory panels which give information on the planned rule
execution schedule (Agenda panel) and the list of all the objects in the Working
Memory (Working Memory panel) of a Drools Engine.

You can select the Agenda or Working Memory panels by either switching to the
Drools perspective or going to the “Window” -> “Show View” Eclipse IDE top menu,
and selecting the “Agenda” or “Working Memory” view from the Drools group, as
shown below.

Figure 34 - Showing the JBoss Drools Agenda or Working Memory view in Eclipse
IDE

The Drools Agenda and Working Memory views are useful in debug mode in Eclipse,
for example, when running the JUnit tests of a Value Pack in debug mode in Eclipse.
You put breakpoints in either the rules or java code of a Value Pack (by double-
clicking left of the line number of a line of rules or java code) then execute the JUnit
tests of a Value Pack in debug mode by right-clicking on the JUnit test file and
selecting the “Debug As” -> “Drools JUnit Test” context menu item, as shown below

104

Figure 35 - Running a JUnit Test of a Value Pack in debug mode in Eclipse IDE

The execution will pause once the first breakpoint is encountered. Once the
execution is paused you can inspect the contents of the Drools Working Memory by
looking at the Working Memory panel, as shown below:

Figure 36 - Sample view of the Drools Working Memory panel in Eclipse IDE

The Drools Working Memory panel gives information on the list of all the objects in
Working Memory: Alarms, Flags, custom objects, …

You can also inspect the Drools Agenda by looking at the Agenda panel, as show
below:

Figure 37 - Sample view of the Drools Agenda panel in Eclipse IDE

The Drools Agenda panel gives information on the planned rule execution schedule.

105

Note

The Drools perspective in Eclipse IDE is provided by Drools plug-in for Eclipse.

For more information on how to install the Drools plug-in for Eclipse IDE please
refer to: [R2] HP UCA for EBC Value Pack Development Guide

6.1.4 Drools logging

6.1.4.1 Configuring the log for Working Memory Agenda and Event Listeners

In the ${UCA_EBC_INSTANCE}/conf/uca-ebc-log4j.xml Log4J

configuration file for UCA for EBC, you can configure the log level and appender
references for two classes that monitor Drools Engine Agenda and Drools Working
Memory for all the scenarios of all the Value Packs running on UCA for EBC.

You can configure the log for these two classes by updating the following section in
the ${UCA_EBC_INSTANCE}/conf/uca-ebc-log4j.xml Log4J

configuration file:

Figure 38 - Configuring the log for Working Memory Agenda and Event Listeners

Setting the log level to DEBUG for the WMAgendaEventListener will add log
messages to the log(s) every time the Agenda of the Drools Engine of a Scenario is
updated, i.e. when:

 Rule activations are created

 Rule activations are canceled

 Before rules are fired

 After rules are fired

Setting the log level to DEBUG for the WMEventListener will add log messages to
the log(s) every time the Working Memory of the Drools Engine of a Scenario is
updated, i.e. when:

 Objects are inserted into Working Memory

 Objects are updated in Working Memory

 Objects are retracted from Working Memory

106

Note

Enabling these logs can be complementary to using the scenario specific Drools
engine logs that are described in section: 6.1.2 “Collector logging”.


6.2 Managing the Drools engine(s)
Each scenario has its own Drools rule engine for processing the Drools rules defined
in the rules files of the scenario. The following operations can be performed on the
working memory of a scenario, without having to restart either UCA for EBC or any
Value Pack:

 Dumping the Working Memory

 Clearing the Working Memory

 Reloading the Rules

6.2.1 Dumping the Working Memory

Dumping the Working Memory of a scenario dumps the complete list of object
(Facts) currently in the working memory of a Scenario to the log(s).

Dumping the Working Memory of a scenario can be performed using the Java JMX
Console at the Scenario level by going to the “MBeans” tab of the Java Console and
navigating to the “uca_ebc/<value pack name>-<value pack
version>/scenarios/<scenario name>/operations” folder.

The following screenshot shows how to dump the working memory at the scenario
level:

Figure 39 - Java JMX Console: Dumping the working memory of a Scenario

Dumping the Working Memory of a scenario can also be performed at the UCA for
EBC User Interface in the Scenario / Monitoring panel, as shown in the following
screenshot:

107

Figure 40 - UCA for EBC User Interface: Dumping the working memory of a
scenario

Note

 For more information on the UCA for EBC User Interface, please refer to: [R3]

HP UCA for EBC User Interface Guide For more information on how to dump the

working memory of a scenario using the Java JMX Console, please see the section:
5.1.3.3 “Monitoring UCA for EBC scenarios”

6.2.2 Clearing the Working Memory

Clearing the Working Memory of a scenario can be necessary at times when you
want to start fresh with your scenario. This operation may or may not be followed
by a resynchronization of the mediation flow of the Value Pack that the scenario
belongs to, in case you need you scenario to receive the current list of events
(Alarms) from the mediation layer or not.

Cleaning the Working Memory of a scenario can be performed using the Java JMX
Console at the Scenario level by going to the “MBeans” tab of the Java Console and
navigating to the “uca_ebc/<value pack name>-<value pack
version>/scenarios/<scenario name>/operations” folder.

The following screenshot shows how to clear the working memory at the scenario
level:

108

Figure 41 - Java JMX Console: Clearing the working memory of a Scenario

Cleaning the Working Memory of a scenario can also be performed at the UCA for
EBC User Interface in the Scenario / Monitoring panel, as shown in the following
screenshot:

Figure 42 - UCA for EBC User Interface: Clearing the working memory of a
scenario

Note

 For more information on the UCA for EBC User Interface, please refer to: [R3]

HP UCA for EBC User Interface Guide For more information on how to clear the

working memory of a scenario using the Java JMX Console, please see the section:
5.1.3.3 “Monitoring UCA for EBC scenarios”

109

6.2.3 Reloading the rules

Each scenario of a Value Pack contains a list of Drools rules files or Drools template
rules files (template rules file are similar to standard rules file but use an extra
parameters file).

Each and all of the rules files (and template rules files) can be modified at runtime
and reloaded without restarting UCA for EBC or any individual Value Pack so that
the new rules files get used right away in the Drools engine of the scenario.

The process for reloading the rules files is the following:

 Update the rules files, template rules files, and template parameters files as
you wish in the deployment directory of the Value Pack:
${UCA_EBC_INSTANCE}/deploy/<value pack name>-<value

pack version>

 Reload the rules of a scenario using either the uca-ebc-admin command-line
tool (with the -r or --reload option), the Java JMX Console or UCA for EBC
User Interface

Reloading the rules of a scenario can be performed using the Java JMX Console at
the Scenario level by going to the “MBeans” tab of the Java Console and navigating
to the “uca_ebc/<value pack name>-<value pack version>/scenarios/<scenario
name>/operations” folder.

The following screenshot shows how to reload rules files at the scenario level:

Figure 43 - Java JMX Console: Reloading the rules of a Scenario

The same operation can be performed for all the rules files of all scenarios of one
Value Pack, as shown in the following screenshot:

110

Figure 44 - Java JMX Console: Reloading the rules of all Scenarios of a Value Pack

Reloading the rules of a scenario can also be performed at the UCA for EBC User
Interface in the Scenario / Monitoring panel, as shown in the following screenshot:

Figure 45 - UCA for EBC User Interface: Reloading the rules of a Scenario

Note

 For more information on the UCA for EBC User Interface, please refer to: [R3]

HP UCA for EBC User Interface Guide For more information on how to reload the

rules of a scenario using the Java JMX Console, please see the section: 5.1.3.3
“Monitoring UCA for EBC scenarios”

 For more information on how to reload the rules of a scenario using the uca-

ebc-admin command-line tool, please see the section: 2.2.3 “uca-ebc-admin”

111

6.3 Managing the flows and actions

6.3.1 Managing the DB flows

Each Value Pack can have one or more DB flows associated with it. Each DB flow
represents a flow of events (Alarms) coming from a DB and going into the Value
Pack and its scenarios.

DB flows are defined at the Value Pack level. All Scenarios of a Value Pack share the
same DB flows.

6.3.1.1 Managing individual DB flows

The following operations can be performed on individual DB flows, without having
to restart neither UCA for EBC nor the Value Pack (each operation only affects one
DB flow):

 Start a DB flow (available in Java Console and UCA for EBC GUI)

 Stop a DB flow (available in Java Console and UCA for EBC GUI)

 Check the status of a DB flow (available in Java Console only)

 Resynchronize a DB flow (available in Java Console and UCA for EBC GUI)

The following screenshot shows how to perform these operations on individual DB
flows using the Java console:

Figure 46 - Java JMX Console: Performing operations on a single DB flow

112

It is possible to start, stop, and resynchronize DB flows using the UCA for EBC User
Interface as shown in the following screenshot:

Figure 47 - UCA for EBC User Interface: Performing operations on a single DB flow

6.3.2 Managing the mediation flows

Each Value Pack can have one or more mediation flows associated with it. Each
mediation flow represents a flow of events (Alarms) coming from the mediation
layer and going into the Value Pack and its scenarios.

Mediation flows are defined at the Value Pack level. All Scenarios of a Value Pack
share the same mediation flows.

6.3.2.1 Managing the mediation flows at the value pack level

The following operations can be performed on the mediation flows of a Value Pack
at the Value Pack level, without having to restart neither UCA for EBC nor the Value
Pack (each operation affects all the mediation flows of the Value Pack at once):

 Create all the mediation flows (available in Java Console, and uca-ebc-admin tool)

 Delete all the mediation flows (available in Java Console, and uca-ebc-admin tool)

 Resynchronize all the mediation flows (available in Java Console, uca-ebc-admin

tool and UCA for EBC GUI)

 Check the status of all the mediation flows (available in Java Console, and uca-

ebc-admin tool)

113

The following screenshot shows how to perform these operation on the mediation
flows at the value pack level using the Java console:

Figure 48 - Java JMX Console: Performing operations on mediation flows at the
Value Pack level

Resynchronizing the mediation flows is the only operation that can be performed at
the value pack level on the mediation flows of a value pack using the UCA for EBC
User Interface as shown in the following screenshot:

Figure 49 - UCA for EBC User Interface: Resynchronizing the mediation flows of a
Value Pack

Resynchronizing the mediation flows of a Value Pack can be necessary at times
when you want to start fresh with your Value Pack and all its scenarios.

Mediation flows at defined at the Value Pack level in the
ValuePackConfiguration.xml file of the Value Pack. Each Value Pack has its

own mediation flows. As a consequence, resynchronizing the mediation flows of a
Value Pack only affects the one Value Pack. All other Value Packs remain
unaffected by the resynchronization.

114

When the mediation flows of a Value Pack are resynchronized, all the scenarios will
receive the current list of events (Alarms) coming from the mediation layer. Usually,
a resynchronization of the mediation flows is preceded by an operation to clear the
Working Memory of all the scenarios of the Value Pack, so that:

 events (Alarms) are not duplicated in Working Memory, especially for
scenarios that are in STREAM mode

 all scenarios can start fresh with both the complete current list of event
from the mediation layer and an empty Working Memory

Note

 For more information on the UCA for EBC User Interface, please refer to: [R3]

HP UCA for EBC User Interface Guide For more information on how to

resynchronize the mediation flow for a value pack, please see the section: 5.1.3.2
“Monitoring UCA for EBC value packs”

6.3.2.2 Managing individual mediation flows

The following operations can be performed on individual mediation flows, without
having to restart neither UCA for EBC nor the Value Pack (each operation only
affects one mediation flow):

 Start a mediation flow (available in Java Console, uca-ebc-admin tool and UCA for
EBC GUI)

 Stop a mediation flow (available in Java Console, uca-ebc-admin tool and UCA for
EBC GUI)

 Check the status of a mediation flow (available in Java Console, and uca-ebc-

admin tool)

 Resynchronize a mediation flow (available in Java Console, uca-ebc-admin tool

and UCA for EBC GUI)

 Display the configuration of the mediation flow (as XML text) (available only in

Java Console)

 Display the status/output of the last action (either CreateFlow, DeleteFlow,
StatusFlow or ResynchronizeFlow) performed on the mediation flow

(available only in Java Console)

 Display the status/output of the last CreateFlow action performed on the
mediation flow (available only in Java Console)

 Display the status/output of the last DeleteFlow action performed on the
mediation flow (available only in Java Console)

 Display the status/output of the last StatusFlow action performed on the
mediation flow (available only in Java Console)

 Display the status/output of the last ResynchronizeFlow action performed
on the mediation flow (available only in Java Console)

115

The following screenshot shows how to perform these operations on individual
mediation flows using the Java console:

Figure 50 - Java JMX Console: Performing operations on a single mediation flow

It is possible to start, stop, resynchronize, as well as view the status of individual
mediation flows using the UCA for EBC User Interface as shown in the following
screenshot:

116

Figure 51 - UCA for EBC User Interface: Performing operations on a single
mediation flow

6.3.3 Managing actions

Actions are executed by the mediation layer. Each action is associated with the
scenario that started the action.

6.3.3.1 Dumping Failed Actions

As actions are executed by the mediation layer, dumping the list of failed actions
for a Scenario can be of great help while investigating issues regarding the
mediation layer at the Scenario level.

The list of failed actions can be dumped in the log files (depending on your Log4J
configuration). The log files can be viewed directly on the file system in the
${UCA_EBC_INSTANCE}/logs directory using any text editor. The log files can

also be viewed at the UCA for EBC User Interface in the Troubleshooting/Logs panel.

Dumping failed actions can only be performed using the Java JMX Console at the
Scenario level by going to the “MBeans” tab of the Java Console and navigating to
the “uca_ebc/<value pack name>-<value pack version>/scenarios/<scenario
name>/operations” folder.

The following screenshot shows how to dump failed actions at the scenario level:

Figure 52 - Java JMX Console: Dumping Failed Actions for a Scenario

Note

 For more information on how to dump failed actions for a scenario, please see

the section: 5.1.3.3 “Monitoring UCA for EBC scenarios”

6.4 UCA for EBC Performance analysis
Through the Java JMX interface, UCA for EBC provides event rate measurements
that help when analyzing the performance of a UCA for EBC solution.

This “Dispatcher Rate” measure is the average event rate of UCA for EBC (in events
per second) since start-up.

117

This measure is available by going to the “MBeans” tab of the Java Console and
navigating to the “uca_ebc/Dispatcher/attributes” folder:

Figure 53 - Java JMX Console: Monitoring performance of UCA for EBC Server

This measure and other measurement rates are available both at the Java JMX
Console and also at the UCA for EBC User Interface in the Troubleshooting /
Statistics panel.

Note

 For more information on the Java JMX Console, please see the section: 5.1.3

“JMX Console”

 For more information on the UCA for EBC User Interface, please refer to: [R3]

HP UCA for EBC User Interface Guide Please see the next section 4.1 “Monitoring

the alarm flow in real-time” for more information on how to monitor the alarm flow
of UCA for EBC.

118

Chapter 7

Frequent problems and solutions

Below is a list of known issues/ problems that you may encounter, along with a
description of how to solve or work around the issue/problem.

7.1 Problems executing uca-ebc-admin

7.1.1 Cannot connect to UCA for EBC JMX connector

If you get an error stating “Cannot connect to UCA Expert JMX connector” while
executing the uca-ebc-admin command-line tool, then you may want to perform
the following verifications:

Table 41 - uca-ebc-admin: Cannot connect to UCA for EBC JMX connector

Below is an example of a command execution displaying this error:

On both HP-UX, and Linux:

$ cd ${UCA_EBC_HOME}/bin

$ uca-ebc-admin <options>

ERROR - Cannot connect to UCA Expert JMX connector. Failed to r

etrieve RMIServer stub: javax.naming.ServiceUnavailableExceptio

n [Root exception is java.rmi.ConnectException: Connection refu

sed to host: localhost; nested exception is:

 java.net.ConnectException: Connection refused (errno:23

9)]

Verification Suggested solution/work-
around

Verify that UCA for EBC Server is started Start UCA for EBC Server if it
is stopped

119

7.1.2 FileNotFoundException: ${UCA_EBC_INSTANCE} /logs/uca-
ebc-admin.log

If you get an error stating “FileNotFoundException: ${UCA_EBC_INSTANCE}
/logs/uca-ebc-admin.log” while executing the uca-ebc-admin command-line tool,
then you may want to perform the following verifications:

Verification Suggested solution/work-
around

Verify that the user trying to execute uca-
ebc-admin has permission to write in the
${UCA_EBC_INSTANCE} directory

Use another user account or
change the permissions on
the ${UCA_EBC_INSTANCE}
directory if this is not the
case

Table 42 - uca-ebc-admin: FileNotFoundException

Below is an example of a command execution displaying this error:

On both HP-UX, and Linux:

$ cd ${UCA_EBC_HOME}/bin

$ uca-ebc-admin <options>

…

log4j:ERROR setFile(null,true) call failed.

java.io.FileNotFoundException: /var/opt/UCA-EBC/logs/uca-ebc-

admin.log (Permission denied (errno:13))

 at java.io.FileOutputStream.openAppend(Native Method)….

7.2 Problems executing uca-ebc-injector

7.2.1 Cannot create connection

If you get an error stating “Cannot create connection on UCA Expert JMS queue”
while executing the uca-ebc-injector command-line tool, then you may want to
perform the following verifications:

Verification Suggested solution/work-around

Verify that UCA for EBC Server is started Start UCA for EBC Server if it is
stopped

Table 43 - uca-ebc-injector: Cannot create connection

Below is an example of a command execution displaying this error:

On both HP-UX, and Linux:

$ cd ${UCA_EBC_HOME}/bin

$ uca-ebc-injector <options>

120

 /opt/UCA-EBC/bin>uca-ebc-injector -file ../alarms/Alarms.xml

ERROR - Command error: Cannot create connection on UCA Expert

JMS queue

7.2.2 FileNotFoundException: ${UCA_EBC_INSTANCE} /logs/uca-
ebc-injector.log

If you get an error stating “FileNotFoundException: ${UCA_EBC_INSTANCE}
/logs/uca-ebc-injector.log” while executing the uca-ebc-injector command-line
tool, then you may want to perform the following verifications:

Verification Suggested solution/work-
around

Verify that the user trying to execute uca-
ebc-injector has permission to write in the
${UCA_EBC_INSTANCE} directory

Use another user account or
change the permissions on
the ${UCA_EBC_INSTANCE}
directory if this is not the
case

Table 44 - uca-ebc-injector: FileNotFoundException

Below is an example of a command execution displaying this error:

On both HP-UX, and Linux:

$ cd ${UCA_EBC_HOME}/bin

$ uca-ebc-injector <options>

…

log4j:ERROR setFile(null,true) call failed.

java.io.FileNotFoundException: /var/opt/UCA-EBC/logs/uca-ebc-

injector.log (Permission denied (errno:13))

 at java.io.FileOutputStream.openAppend(Native Method)….

7.3 Problems starting UCA for EBC

7.3.1 AlreadyBoundException

If you get an error stating “java.rmi.AlreadyBoundException: uca-ebc” while
starting UCA for EBC, then you may want to perform the following verifications:

Verification Suggested solution/work-around

Verify that there’s no port number
conflict between UCA for EBC RMI
port number and the port numbers
used by another process on the
system

Update the UCA for EBC RMI port
number in the
${UCA_EBC_INSTANCE}/conf/uca-
ebc.properties file to avoid the port
number conflict if needed

Table 45 - uca-ebc: AlreadyBoundException

Below is an example of a command execution displaying this error:

On both HP-UX, and Linux:

$ cd ${UCA_EBC_HOME}/bin

$ uca-ebc <options>

121

…

INFO - Unregistering JMX-exposed beans on shutdown

INFO - Closing Hibernate SessionFactory

INFO - closing

org.springframework.beans.factory.BeanCreationException: Error

creating bean with name 'serverConnector' defined in class path

resource [main-context.xml]: Invocation of init method failed;

nested exception is java.io.IOException: Cannot bind to URL [rm

i://localhost:1100/uca-

ebc]: javax.naming.NameAlreadyBoundException: uca-

ebc [Root exception is java.rmi.AlreadyBoundException: uca-ebc]

7.3.2 ClassNotFoundException:
javax.management.remote.rmi.RMIServerImpl_Stub

If you get an error stating “java.lang.ClassNotFoundException:
javax.management.remote.rmi.RMIServerImpl_Stub” while starting UCA for EBC,
then you may want to perform the following verifications:

Verification Suggested solution/work-around

Verify that there’s no port number
conflict between UCA for EBC RMI
port number and the port numbers
used by another process on the
system

Update the UCA for EBC RMI port
number in the
${UCA_EBC_INSTANCE}/conf/uca-
ebc.properties file to avoid the port
number conflict if needed

Table 46 - uca-ebc: ClassNotFoundException

Below is an example of a command execution displaying this error:

On both HP-UX, and Linux:

$ cd ${UCA_EBC_HOME}/bin

$ uca-ebc <options>

122

…

 ... 30 more

Caused by: java.rmi.UnmarshalException: error unmarshalling arg

uments; nested exception is:

 java.lang.ClassNotFoundException: javax.management.remo

te.rmi.RMIServerImpl_Stub (no security manager: RMI class loade

r disabled)

Caused by: java.lang.ClassNotFoundException: javax.management.r

emote.rmi.RMIServerImpl_Stub (no security manager: RMI class lo

ader disabled)

7.3.3 FileNotFoundException: ${UCA_EBC_INSTANCE} /logs/uca-
ebc.log

If you get an error stating “FileNotFoundException: ${UCA_EBC_INSTANCE}
/logs/uca-ebc.log” while starting UCA for EBC, then you may want to perform the
following verifications:

Verification Suggested solution/work-around

Verify that the user trying to start
UCA for EBC has permission to
write in the
${UCA_EBC_INSTANCE} directory

Start UCA for EBC under the uca
account if this is not the case

Table 47 - uca-ebc: FileNotFoundException

Below is an example of a command execution displaying this error:

On both HP-UX, and Linux:

$ cd ${UCA_EBC_HOME}/bin

$ uca-ebc <options>

…

log4j:ERROR setFile(null,true) call failed.

java.io.FileNotFoundException: /var/opt/UCA-EBC/logs/uca-

ebc.log (Permission denied (errno:13))

 at java.io.FileOutputStream.openAppend(Native Method)

 at java.io.FileOutputStream.<init>(FileOutputStream.jav

a:177)

….

123

Glossary

UCA: Unified Correlation Analyzer

EBC: Event Based Correlation

CA: Channel Adapter for OSS Open Mediation V7.2

JMS: Java Messaging Service

JMX: Java Management Extension, used to access or process action on the UCA for
EBC product

JNDI: Java Naming and Directory Interface

Inference engine: Process that uses a Rete algorithm

DRL: Drools Rule file

XML: eXtensible Markup Language

XSD: Schema of an XML file, describing its structure

X733: Standard describing the structure of an Alarm used in telecommunication
environment

EVP: UCA for EBC Value Pack

